scholarly journals Year‐round optical properties and source characterization of Arctic organic carbon aerosols on the North Slope Alaska

2017 ◽  
Vol 122 (17) ◽  
pp. 9319-9331 ◽  
Author(s):  
T. E. Barrett ◽  
R. J. Sheesley
2014 ◽  
Vol 119 (6) ◽  
pp. 3476-3485 ◽  
Author(s):  
Elena N. Kirillova ◽  
August Andersson ◽  
Suresh Tiwari ◽  
Atul Kumar Srivastava ◽  
Deewan Singh Bisht ◽  
...  

2017 ◽  
Author(s):  
John R. Andrews ◽  
◽  
Jeffrey G. Paine ◽  
Michael H. Young

2014 ◽  
Vol 14 (17) ◽  
pp. 24753-24810 ◽  
Author(s):  
K. Dzepina ◽  
C. Mazzoleni ◽  
P. Fialho ◽  
S. China ◽  
B. Zhang ◽  
...  

Abstract. Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m a.m.s.l. on Pico Island of the Azores archipelago in the North Atlantic. The observatory (38°28'15'' N; 28°24'14'' W) is located ∼3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances, mainly from North America. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon and inorganic ion species. The average ambient concentration of aerosol was 0.9 μg m−3; on average organic aerosol contributes the majority of mass (57%), followed by sulfate (21%) and nitrate (17%). Filter-collected aerosol measurements were positively correlated (with an r2 ≥ 0.80) with continuous aerosol measurements of black carbon, aerosol light scattering and number concentration. Water-soluble organic carbon (WSOC) species extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. FLEXPART retroplume analysis shows the sampled air masses were very aged (average plume age > 12 days). Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100–1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. These aged WSOC compounds have an average O / C ratio of ∼0.45, which is relatively low compared to O / C ratios of other aged aerosol and might be the result of evaporation and increased fragmentation during long-range transport. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in WSOC species and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of biomass burning phenolic species suggests that the aerosol collected at the Pico Mountain Observatory had undergone cloud processing before reaching the site. Finally, the air masses on 9/25 were more aged (∼15 days) and influenced by marine emissions, as indicated by organosulfates and other species characteristic for marine aerosol such as fatty acids. The change in air masses for the two samples was corroborated by the changes in ozone and the non-methane hydrocarbons ethane and propane, morphology of particles, as well as by the FLEXPART retroplume simulations. This manuscript presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at a lower free troposphere remote location in the North Atlantic.


2021 ◽  
Vol 21 (11) ◽  
pp. 8531-8555
Author(s):  
Yue Zhou ◽  
Christopher P. West ◽  
Anusha P. S. Hettiyadura ◽  
Xiaoying Niu ◽  
Hui Wen ◽  
...  

Abstract. Water-soluble organic carbon (WSOC) in the cryosphere has an important impact on the biogeochemistry cycling and snow–ice surface energy balance through changes in the surface albedo. This work reports on the chemical characterization of WSOC in 28 representative snowpack samples collected across a regional area of northern Xinjiang, northwestern China. We employed multimodal analytical chemistry techniques to investigate both bulk and molecular-level composition of WSOC and its optical properties, informing the follow-up radiative forcing (RF) modeling estimates. Based on the geographic differences and proximity of emission sources, the snowpack collection sites were grouped as urban/industrial (U), rural/remote (R), and soil-influenced (S) sites, for which average WSOC total mass loadings were measured as 1968 ± 953 ng g−1 (U), 885 ± 328 ng g−1 (R), and 2082 ± 1438 ng g−1 (S), respectively. The S sites showed the higher mass absorption coefficients at 365 nm (MAC365) of 0.94 ± 0.31 m2 g−1 compared to those of U and R sites (0.39 ± 0.11 m2 g−1 and 0.38 ± 0.12 m2 g−1, respectively). Bulk composition of WSOC in the snowpack samples and its basic source apportionment was inferred from the excitation–emission matrices and the parallel factor analysis featuring relative contributions of one protein-like (PRLIS) and two humic-like (HULIS-1 and HULIS-2) components with ratios specific to each of the S, U, and R sites. Additionally, a sample from site 120 showed unique pollutant concentrations and spectroscopic features remarkably different from all other U, R, and S samples. Molecular-level characterization of WSOC using high-resolution mass spectrometry (HRMS) provided further insights into chemical differences among four types of samples (U, R, S, and 120). Specifically, many reduced-sulfur-containing species with high degrees of unsaturation and aromaticity were uniquely identified in U samples, suggesting an anthropogenic source. Aliphatic/protein-like species showed the highest contribution in R samples, indicating their biogenic origin. The WSOC components from S samples showed high oxygenation and saturation levels. A few unique CHON and CHONS compounds with high unsaturation degree and molecular weight were detected in the 120 sample, which might be anthraquinone derivatives from plant debris. Modeling of the WSOC-induced RF values showed warming effects of 0.04 to 0.59 W m−2 among different groups of sites, which contribute up to 16 % of that caused by black carbon (BC), demonstrating the important influences of WSOC on the snow energy budget.


2021 ◽  
Author(s):  
Yue Zhou ◽  
Christopher P. West ◽  
Anusha P. S. Hettiyadura ◽  
Xiaoying Niu ◽  
Hui Wen ◽  
...  

Abstract. Water-soluble organic carbon (WSOC) in the cryosphere has important impact on the biogeochemistry cycling and snow/ice surface energy balance through changes in the surface albedo. This work reports on chemical characterization of WSOC in 28 representative snowpack samples collected across regional area of northern Xinjiang, northwestern China. We employed multi-modal analytical chemistry techniques to investigate both bulk and molecular-level composition of WSOC and its optical properties, informing the follow-up radiative forcing (RF) modeling estimates. Based on the geographic differences and proximity of emission sources, the snowpack collection sites were grouped as urban/industrial (U), rural/remote (R), and soil-influenced (S) sites, for which average WSOC total mass loadings were measured as 1968 ± 953 ng g−1 (U), 885 ± 328 ng g−1 (R), and 2082 ± 1438 ng g−1 (S), respectively. The S sites showed the higher mass absorption coefficients at 365 nm (MAC365) of 0.94 ± 0.31 m2 g−1 compared to those of U and R sites (0.39 ± 0.11 m2 g−1 and 0.38 ± 0.12 m2 g−1, respectively). Bulk composition of WSOC in the snowpack samples and its basic source apportionment was inferred from the Excitation-Emission Matrices and the Parallel Factor analysis featuring relative contributions of two humic-like (HULIS-1 and HULIS-2) and one protein-like (PRLIS) components with ratios specific to each of the S, U, and R sites. Additionally, a sample from site 120 showed unique pollutant concentrations and spectroscopic features remarkably different from all other U, R, and S samples. Molecular-level characterization of WSOC using high-resolution mass spectrometry (HRMS) provided further insights into chemical differences among four types of samples (U, R, S, and 120). Specifically, much more reduced S-containing species with high degree of unsaturation and aromaticity were uniquely identified in U samples, suggesting an anthropogenic source. Aliphatic/proteins-like species showed highest contribution in R samples, indicating their biogenic origin. The WSOC components from S samples showed high oxygenation and saturation levels. A few of unique CHON and CHONS compounds with high molecular weight were detected in the 120 sample, which might be anthraquinone derivatives from plant debris. Modeling of the WSOC-induced RF values showed warming effects of 0.04 to 0.59 W m−2 among different groups of sites, which contribute up to 16 % of that caused by BC, demonstrating the important influences of WSOC on the snow energy budget.


Sign in / Sign up

Export Citation Format

Share Document