scholarly journals Liquid Metal Interdigitated Capacitive Strain Sensor with Normal Stress Insensitivity

2021 ◽  
pp. 2100201
Author(s):  
Dongguang Zhang ◽  
Jie Zhang ◽  
Yali Wu ◽  
Xiaoyan Xiong ◽  
Jiayi Yang ◽  
...  
Lab on a Chip ◽  
2015 ◽  
Vol 15 (5) ◽  
pp. 1376-1384 ◽  
Author(s):  
Shanliangzi Liu ◽  
Xiaoda Sun ◽  
Owen J. Hildreth ◽  
Konrad Rykaczewski

We show that single channel capacitive strain sensor consisting of a high dielectric constant liquid sandwiched in-between two liquid metal electrodes can have 25 times higher capacitance per sensor's base area when compared to current two-channel liquid metal stain sensors.


2021 ◽  
pp. 2010830
Author(s):  
Funian Mo ◽  
Yan Huang ◽  
Qing Li ◽  
Zifeng Wang ◽  
Ruijuan Jiang ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 395
Author(s):  
Satoshi Konishi ◽  
Fuminari Mori ◽  
Ayano Shimizu ◽  
Akiya Hirata

Motion capture of a robot and tactile sensing for a robot require sensors. Strain sensors are used to detect bending deformation of the robot finger and to sense the force from an object. It is important to introduce sensors in effective combination with actuators without affecting the original performance of the robot. We are interested in the improvement of flexible strain sensors integrated into soft microrobot fingers using a pneumatic balloon actuator (PBA). A strain sensor using a microchannel filled with liquid metal was developed for soft PBAs by considering the compatibility of sensors and actuators. Inflatable deformation generated by PBAs, however, was found to affect sensor characteristics. This paper presents structural reinforcement of a liquid metal-based sensor to solve this problem. Parylene C film was deposited into a microchannel to reinforce its structure against the inflatable deformation caused by a PBA. Parylene C deposition into a microchannel suppressed the interference of inflatable deformation. The proposed method enables the effective combination of soft PBAs and a flexible liquid metal strain sensor for use in microrobot fingers.


Author(s):  
Jing Chen ◽  
Qinwu Gaol ◽  
Jinjie Zhang ◽  
Zhenwen Xie ◽  
Olatunji Mumini Omisore ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Cuong Do ◽  
Ashwin A. Seshia

Temperature variation is one of the most crucial factors that need to be cancelled in MEMS sensors. Many traditional methodologies require an additional circuit to compensate for temperature. This work describes a new active temperature compensation method for MEMS capacitive strain sensor without any additional circuit. The proposed method is based on a complement 2-D capacitive structure design. It consumes zero-power, which is essential toward the realization of a low-power temperature-compensated sensor in battery-powered or energy-harvesting applications<br>


2021 ◽  
pp. 1-1
Author(s):  
Chi Zhang ◽  
Shang-Yang Zhang ◽  
Li-Feng Wang

2020 ◽  
Vol 8 (18) ◽  
pp. 6034-6041 ◽  
Author(s):  
V. Kesava Rao ◽  
Nitzan Shauloff ◽  
XiaoMeng Sui ◽  
H. Daniel Wagner ◽  
Raz Jelinek

Highly sensitive and stretchable PDA–PAA–Cr3+ hydrogel capacitive strain sensor is fabricated and used to monitor mechanical deformation and human motion.


Author(s):  
Austin Smith ◽  
Hamzeh Bardaweel

In this work a flexible strain sensor is fabricated using Fused Deposition Modeling (FDM) 3D printing technique. The strain sensor is fabricated using commercially available flexible Thermoplastic Polyurethane (TPU) filaments and liquid metal Galinstan Ga 68.5% In 21% Sn 10%. The strain sensor consists of U-shape 2.34mm long and 0.2mm deep channels embedded inside a TPU 3D printed structure. The performance of the strain sensor is measured experimentally. Gauge Factor is estimated by measuring change in electric resistance when the sensor is subject to 13.2% – 38.6% strain. Upon straining and unstraining, results from characterization tests show high linearity in the range of 13.2% to 38.6% strain with very little hysteresis. However, changes due to permanent deformations are a limiting factor in the usefulness of these sensors because these changes limit the consistency of the device. FDM 3D printing shows promise as a method for fabricating flexible strain sensors. However, more investigation is needed to look at the effects of geometries and 3D printing process parameters on the yield elongation of the flexible filaments. Additionally, more investigation is needed to observe the effect of distorted dimensions of the 3D printed channels on the sensitivity of the strain sensor. It is anticipated that successful implementation of these commercially available filaments and FDM 3D printers will lead to reduction in cost and complexity of developing these flexible sensors.


2020 ◽  
Vol 1570 ◽  
pp. 012033
Author(s):  
ZHONG Jun ◽  
LI Chun-na ◽  
ZHU Wen-liang ◽  
ZHOU Hong ◽  
LIU Yong-feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document