Double‐layer modified silica with potential reinforcement for solution polymerized styrene‐butadiene rubber/butadiene rubber composite

2021 ◽  
pp. 51959
Author(s):  
Qingfeng Tian ◽  
Yuan Tang ◽  
Xiaohui Lv ◽  
Liyong Niu ◽  
Yanpeng Wang ◽  
...  
2016 ◽  
Vol 124-125 ◽  
pp. 167-174 ◽  
Author(s):  
Yinmin Zhang ◽  
Qinfu Liu ◽  
Shilong Zhang ◽  
Yude Zhang ◽  
Yongfeng Zhang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (111) ◽  
pp. 91262-91272 ◽  
Author(s):  
Juqiao Su ◽  
Qi Yang ◽  
Dahang Tang ◽  
Yajiang Huang ◽  
Zhongguo Zhao ◽  
...  

We propose that modified silica filled rubber composites with moderate silica flocculation possesses preferable resistance to crack growth by the crack tip deflection mechanism.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1820 ◽  
Author(s):  
Haijun Ji ◽  
Hui Yang ◽  
Liwei Li ◽  
Xinxin Zhou ◽  
Lan Yin ◽  
...  

Ester-functionalized styrene-butadiene rubber (dibutyl itaconate-styrene-butadiene rubber) (D-ESBR) was synthesized by low-temperature emulsion polymerization using dibutyl itaconate (DBI) as a modified monomer containing ester groups. Nonpetroleum-based silica with hydroxy groups was used as a filler to enhance the D-ESBR, which can provide excellent mechanical properties, low rolling resistance, and high wet skid resistance. During the preparation of the silica/D-ESBR nanocomposites, a hydrogen-bonding interface was formed between the hydroxy groups on the surface of silica and the ester groups in the D-ESBR macromolecules. As the content of ester groups in the D-ESBR increases, the dispersion of silica in the nanocomposites is gradually improved, which was verified by rubber process analyzer (RPA) and scanning electron microscopy (SEM). Overall mechanical properties of the silica/D-ESBR modified with 5 wt % DBI were improved and became superior to that of the non-modified nanocomposite. Compared with the non-modified silica/D-ESBR, the DBI modified silica/D-ESBR exhibited a lower tan δ value at 60 °C and comparable tan δ value at 0 °C, indicating that the DBI modified silica/D-ESBR had lower rolling resistance without sacrificing wet skid resistance.


RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34330-34341 ◽  
Author(s):  
Changjie Yin ◽  
Qiuyu Zhang

The reinforcement of octamethylcyclotetrasiloxane (D4) grafted styrene butadiene rubber (SBR-g-D4) with in situ generated silica was performed using the sol–gel reaction of tetraethoxysilane (TEOS) in latex.


Sign in / Sign up

Export Citation Format

Share Document