scholarly journals Arrdc4‐dependent extracellular vesicle biogenesis is required for sperm maturation

2021 ◽  
Vol 10 (8) ◽  
Author(s):  
Natalie J. Foot ◽  
Macarena B. Gonzalez ◽  
Kelly Gembus ◽  
Pamali Fonseka ◽  
Jarrod J. Sandow ◽  
...  
2016 ◽  
Vol 32 (12) ◽  
pp. 921-929 ◽  
Author(s):  
Eduardo de la Torre-Escudero ◽  
Adam P.S. Bennett ◽  
Alexzandra Clarke ◽  
Gerard P. Brennan ◽  
Mark W. Robinson

2018 ◽  
Vol 46 (5) ◽  
pp. 1137-1146 ◽  
Author(s):  
Arash Latifkar ◽  
Richard A. Cerione ◽  
Marc A. Antonyak

Tumor cells interact with each other, and their surroundings, using a variety of mechanisms to promote virtually all aspects of cancer progression. One such form of intercellular communication that has been attracting considerable attention from the cancer community and the pharmaceutical industry in recent years involves the ability of cancer cells to generate multiple distinct types of non-classical secretory vesicles, generally referred to as extracellular vesicles (EVs). Microvesicles (MVs) represent one of the major classes of EVs and are formed as a result of the outward budding and fission of the plasma membrane. The other main class of EVs is exosomes, which are generated when multivesicular bodies fuse with the cell surface and release their contents into the extracellular space. Both MVs and exosomes have been shown to contain bioactive cargo, including proteins, metabolites, RNA transcripts, microRNAs, and DNA that can be transferred to other cancer cells and stimulate their growth, survival, and migration. However, cancer cell-derived EVs also play important roles in helping re-shape the tumor microenvironment to support tumor expansion and invasive activity, dampen immune responses, as well as enter the circulation to help promote metastatic spread. Here, we provide an overview of what is currently known regarding how the different classes of EVs are generated and contribute to various cancer cell phenotypes. Moreover, we highlight how some of the unique properties of EVs are being used for the development of novel diagnostic and clinical applications.


2018 ◽  
Vol 62 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Crislyn D’Souza-Schorey ◽  
Jeffrey S. Schorey

EV (extracellular vesicle) biology is a rapidly expanding field. These heterogeneous membrane vesicles, which are shed from virtually all cell types, collectively represent a new dimension of intercellular communication in normal physiology and disease. They have been shown to deliver infectious and pathogenic agents to non-infected cells whereas in cancers they are thought to condition the tumor microenvironment. Their presence in body fluids and inherent capacity for systemic delivery point to their clinical promise. All of the above only intensifies the need to better understand the classification, mode of biogenesis, and contents of the different subtypes of EVs. This article focusses on vesicle subtypes labeled as exosomes and MVs (microvesicles) and discusses the biogenesis and release of these vesicles from cells.


2018 ◽  
Vol 293 (39) ◽  
pp. 15277-15289 ◽  
Author(s):  
Masanori Fukushima ◽  
Debanjali Dasgupta ◽  
Amy S. Mauer ◽  
Eiji Kakazu ◽  
Kazuhiko Nakao ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ghulam Hassan Dar ◽  
Cláudia C. Mendes ◽  
Wei-Li Kuan ◽  
Alfina A. Speciale ◽  
Mariana Conceição ◽  
...  

2015 ◽  
Vol 26 (15) ◽  
pp. 2823-2832 ◽  
Author(s):  
Julie E. Maguire ◽  
Malan Silva ◽  
Ken C.Q. Nguyen ◽  
Elizabeth Hellen ◽  
Andrew D. Kern ◽  
...  

The cilium both releases and binds to extracellular vesicles (EVs). EVs may be used by cells as a form of intercellular communication and mediate a broad range of physiological and pathological processes. The mammalian polycystins (PCs) localize to cilia, as well as to urinary EVs released from renal epithelial cells. PC ciliary trafficking defects may be an underlying cause of autosomal dominant polycystic kidney disease (PKD), and ciliary–EV interactions have been proposed to play a central role in the biology of PKD. In Caenorhabditis elegans and mammals, PC1 and PC2 act in the same genetic pathway, act in a sensory capacity, localize to cilia, and are contained in secreted EVs, suggesting ancient conservation. However, the relationship between cilia and EVs and the mechanisms generating PC-containing EVs remain an enigma. In a forward genetic screen for regulators of C. elegans PKD-2 ciliary localization, we identified CIL-7, a myristoylated protein that regulates EV biogenesis. Loss of CIL-7 results in male mating behavioral defects, excessive accumulation of EVs in the lumen of the cephalic sensory organ, and failure to release PKD-2::GFP-containing EVs to the environment. Fatty acylation, such as myristoylation and palmitoylation, targets proteins to cilia and flagella. The CIL-7 myristoylation motif is essential for CIL-7 function and for targeting CIL-7 to EVs. C. elegans is a powerful model with which to study ciliary EV biogenesis in vivo and identify cis-targeting motifs such as myristoylation that are necessary for EV–cargo association and function.


2019 ◽  
Author(s):  
Jyothi S. Akella ◽  
Stephen P. Carter ◽  
Fatima Rizvi ◽  
Ken C.Q. Nguyen ◽  
Sofia Tsiropoulou ◽  
...  

ABSTRACTCilia both receive and send information, the latter in the form of extracellular vesicles (EVs). EVs are nano-communication devices that cells shed to influence cell, tissue, and organism behavior. Mechanisms driving ciliary EV biogenesis and environment release are almost entirely unknown. Here, we show that the ciliary G-protein RAB28, associated with human autosomal recessive cone-rod dystrophy, negatively regulates EV levels in the sensory organs of Caenorhabditis elegans. We also find that sequential targeting of lipidated RAB28 to periciliary and ciliary membranes is highly dependent on the BBSome and PDE6D, respectively, and that BBSome loss causes excessive and ectopic EV production. Our data indicate that RAB28 and the BBSome are key in vivo regulators of EV production at the periciliary membrane. Our findings also suggest that EVs control sensory organ homeostasis by mediating communication between ciliated neurons and glia, and that defects in ciliary EV biogenesis may contribute to human ciliopathies.


2021 ◽  
Author(s):  
Juan Wang ◽  
Inna A. Nikonorova ◽  
Malan Silva ◽  
Jonathon D. Walsh ◽  
Peter E. Tilton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document