Escherichia coli Levels and Microbial Source Tracking in Stormwater Retention Ponds and Detention Basins

2021 ◽  
Author(s):  
Erika Olson ◽  
Christina L. M. Hargiss ◽  
Jack Norland
2005 ◽  
Vol 71 (10) ◽  
pp. 5992-5998 ◽  
Author(s):  
Zexun Lu ◽  
David Lapen ◽  
Andrew Scott ◽  
Angela Dang ◽  
Edward Topp

ABSTRACT Repetitive extragenic palindromic PCR fingerprinting of Escherichia coli is one microbial source tracking approach for identifying the host source origin of fecal pollution in aquatic systems. The construction of robust known-source libraries is expensive and requires an informed sampling strategy. In many types of farming systems, waste is stored for several months before being released into the environment. In this study we analyzed, by means of repetitive extragenic palindromic PCR using the enterobacterial repetitive intergenic consensus primers and comparative analysis using the Bionumerics software, collections of E. coli obtained from a dairy farm and from a swine farm, both of which stored their waste as a slurry in holding tanks. In all fecal samples, obtained from either barns or holding tanks, the diversity of the E. coli populations was underrepresented by collections of 500 isolates. In both the dairy and the swine farms, the diversity of the E. coli community was greater in the manure holding tank than in the barn, when they were sampled on the same date. In both farms, a comparison of stored manure samples collected several months apart suggested that the community composition changed substantially in terms of the detected number, absolute identity, and relative abundance of genotypes. Comparison of E. coli populations obtained from 10 different locations in either holding tank suggested that spatial variability in the E. coli community should be accounted for when sampling. Overall, the diversity in E. coli populations in manure slurry storage facilities is significant and likely is problematic with respect to library construction for microbial source tracking applications.


2017 ◽  
Vol 17 (5) ◽  
pp. 1468-1478
Author(s):  
Roohollah Kheiri ◽  
Leili Akhtari

The aim of this study was to analyze the enterobacterial repetitive intergenic consensus (ERIC)-types, phylo-groups and antimicrobial resistance (AMR) patterns of Escherichia coli and to investigate if these approaches are suitable for microbial source tracking (MST). E. coli strains were isolated from cattle faeces and Karaj River. For genetic diversity, AMR profile, and phylo-grouping, we applied ERIC-PCR, disk diffusion, and multiplex-PCR, respectively. Fifty isolates from each sample group were used in the study. ERIC fingerprinting produced ten different bands, demonstrating 64 unique and 36 repetitive profiles. Six isolates from the river showed the same ERIC pattern of the cattle, of which four expressed the same AMR profile. E. coli isolates from water were represented in A, B1, C, and D phylo-groups. Phylo-groups A, B1, and E were more prevalent in the cattle isolates and B2 was absent in both sources. Three of the water isolates with the same ERIC-type and AMR to cattle isolates showed the same phylo-groups. Genetic characteristics, AMR, and phylo-groups of the isolates from the river are diverse and complex. For accurate MST, complementary approaches should be applied together and a comprehensive library should be provided.


2006 ◽  
Vol 78 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Patricia A. Orosz-Coghlan ◽  
Patricia A. Rusin ◽  
Martin M. Karpiscak ◽  
Charles P. Gerba

2006 ◽  
Vol 67 (3) ◽  
pp. 507-526 ◽  
Author(s):  
Kathryn M. Ivanetich ◽  
Pei-hsin Hsu ◽  
Kathleen M. Wunderlich ◽  
Evan Messenger ◽  
Ward G. Walkup ◽  
...  

2009 ◽  
Vol 55 (3) ◽  
pp. 269-276 ◽  
Author(s):  
Tanya Kon ◽  
Susan C. Weir ◽  
E. Todd Howell ◽  
Hung Lee ◽  
Jack T. Trevors

Repetitive element-polymerase chain reaction (REP-PCR) DNA fingerprinting and library-based microbial source tracking (MST) methods were utilized to investigate the potential sources of Escherichia coli pollution in recreational waters of southeastern Lake Huron. In addition to traditional sources such as humans, agriculture, and wildlife, environmentally persistent E. coli isolates were included in the identification library as a separate library unit consisting of the E. coli strains isolated from interstitial water on the beach itself. Our results demonstrated that the dominant source of E. coli pollution of the lake was agriculture, followed by environmentally adapted E. coli strains, wildlife, and then humans. A similar ratio of contributing sources was observed in all samples collected from various locations including the river discharging to the beach in both 2005 and 2006. The high similarity between the compositions of E. coli communities collected simultaneously in the river and in the lake suggests that tributaries were the major overall sources of E. coli to the lake. Our findings also suggest that environmentally adapted strains (EAS) of E. coli should be included as one of the potential sources in future microbial source tracking efforts.


2013 ◽  
Vol 47 (18) ◽  
pp. 6849-6861 ◽  
Author(s):  
Dan Wang ◽  
Andreas H. Farnleitner ◽  
Katharine G. Field ◽  
Hyatt C. Green ◽  
Orin C. Shanks ◽  
...  

2010 ◽  
Vol 76 (10) ◽  
pp. 3255-3262 ◽  
Author(s):  
Linda K. Dick ◽  
Erin A. Stelzer ◽  
Erin E. Bertke ◽  
Denise L. Fong ◽  
Donald M. Stoeckel

ABSTRACT Fecal indicator bacteria (FIB), commonly used to regulate sanitary water quality, cannot discriminate among sources of contamination. The use of alternative quantitative PCR (qPCR) methods for monitoring fecal contamination or microbial source tracking requires an understanding of relationships with cultivated FIB, as contamination ages under various conditions in the environment. In this study, the decay rates of three Bacteroidales 16S rRNA gene markers (AllBac for general contamination and qHF183 and BacHum for human-associated contamination) were compared with the decay rate of cultivated Escherichia coli in river water microcosms spiked with human wastewater. The following five sets of microcosms were monitored over 11 days: control, artificial sunlight, sediment exposure, reduced temperature, and no autochthonous predation. Decay was characterized by estimation of the time needed to produce a 2-log reduction (t 99). No treatment-associated differences in the decay of the 4 targets were evident except with reduced predation, where E. coli, qHF183, and BacHum markers had lower levels of decay by day 3. However, there were substantial target-associated differences. Decay curves for the AllBac marker indicated a larger persistent population than those of the other targets. Exposure to sunlight, sediment, and reduced predation resulted in more rapid decay of the human-associated markers relative to cultivable E. coli, but there were no differences in t 99 values among the 4 targets under control conditions or at reduced temperatures. Further evaluation of epidemiological relationships will be needed in order to relate the markers directly to health risk. These findings suggest that the tested human-associated markers can complement E. coli as indicators of the human impact on sanitary water quality under the constrained conditions described in this paper.


Sign in / Sign up

Export Citation Format

Share Document