Tensile Tests of FRCM Coupons: The Influence of the Fiber-Matrix Bond Properties

2021 ◽  
pp. 2008-2019
Author(s):  
Francesco Focacci ◽  
Tommaso D’Antino ◽  
Christian Carloni
2007 ◽  
Vol 353-358 ◽  
pp. 1406-1409 ◽  
Author(s):  
Jun Ji Ohgi ◽  
S. Tanaka ◽  
T. Kuramoto ◽  
M. Suzuki ◽  
Koichi Goda

The tension-tension fatigue tests for SiC/SiC composites were performed under the conditions that the maximum load Pmax was 80-90% to the fracture load of the tensile tests and the stress ratio was Rσ = 0.5. The composites exhibited a width in stress-strain hysteresis loop under one load cycling. In some cases the mean strain εmean gradually increase with increasing in number of cycles. These variations would reflect the developments of the fatigue damage at the fiber/matrix interface during the cyclic loading process. The pull-out lengths of the fibers for the fatigued- and not fatigued-specimens were measured through the SEM observations after the tensile test. In all materials, the average pull-out length of fibers in fatigued material was larger than in not fatigued material because the cyclic loading affected on the fiber/matrix interfacial strength.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1725 ◽  
Author(s):  
Ankur Bajpai ◽  
Prateek Saxena ◽  
Klaus Kunze

High-performance polymer composites are being increasingly favored for structural applications. For this purpose, efforts are being focused on exploring the potential of high-performance thermoplastics and thermosets. Cyanate ester (CE) resin is a special thermoset that can be used at up to 400 °C without any considerable degradation; however, its tribological properties are not at the adequate level. Hence, it is needed to use this polymer in composite form with the fibrous/particulate reinforcement to impart better tribological properties and mechanical strength via a strong fiber–matrix interface. Carbon fiber/fabrics are at the forefront as reinforcement for specialty polymers. The tribological and tensile properties of cyanate ester (CE) composites-filled graphite, polytetrafluoroethylene (PTFE), and MoS2 micron-sized fillers reinforced with carbon fibers (CF) are investigated experimentally in a block-on-ring setup at 100 N, for 10 h, and with a sliding distance of approximately 10,000 m, against a hardened polished 100Cr6 steel shaft and diamond-like-coated (DLC) 100Cr6 steel shaft. The tribological properties of the composites including the coefficient of friction and specific wear rate are enhanced especially with the incorporation of graphite fillers. The friction coefficient and wear rate of the graphite-based composite was decreased significantly at 5 wt.% of graphite concentration. Further, at the same concentration, the graphite-based composite showed superior tensile properties as compared to the reference system owing to better dispersion and adhesion between the fibers and matrix. Tensile tests are performed to characterize the fiber–matrix interfacial adhesion and other strength properties.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
K.L. More ◽  
R.A. Lowden

The mechanical properties of fiber-reinforced composites are directly related to the nature of the fiber-matrix bond. Fracture toughness is improved when debonding, crack deflection, and fiber pull-out occur which in turn depend on a weak interfacial bond. The interfacial characteristics of fiber-reinforced ceramics can be altered by applying thin coatings to the fibers prior to composite fabrication. In a previous study, Lowden and co-workers coated Nicalon fibers (Nippon Carbon Company) with silicon and carbon prior to chemical vapor infiltration with SiC and determined the influence of interfacial frictional stress on fracture phenomena. They found that the silicon-coated Nicalon fiber-reinforced SiC had low flexure strengths and brittle fracture whereas the composites containing carbon coated fibers exhibited improved strength and fracture toughness. In this study, coatings of boron or BN were applied to Nicalon fibers via chemical vapor deposition (CVD) and the fibers were subsequently incorporated in a SiC matrix. The fiber-matrix interfaces were characterized using transmission and scanning electron microscopy (TEM and SEM). Mechanical properties were determined and compared to those obtained for uncoated Nicalon fiber-reinforced SiC.


The article is devoted to the actual problem of assigning optimal parameters for connecting steel plates on cover plates with angular welds that are widely used in construction practice. The article presents the results of a comprehensive study of operation of a welded assembly of the plates connection on cover plates. An algorithm is proposed for determining the optimal parameters of a welded joint with fillet welds on the cover plates, which makes it possible to obtain a strength balanced connection. The results of full-scale tensile tests of models were presented. These results confirmed the correctness of the assumed design assumptions, and made it possible to obtain a form of destruction, not characteristic and not described in the normative literature, expressed by cutting the main elements along the length of the overlap in the joint. The possibility of such a form of destruction was confirmed by the results of numerical research in a nonlinear formulation. The optimal parameters of the nodal welded joint determined by engineering calculation are confirmed by experimental studies, as well as by the results of numerical experiments on models of calculation schemes, taking into account the physical nonlinearity of the material operation. The obtained dependence for determining the bearing capacity of the joint by the cut-off mechanism and the expression for limiting the overlap length of the cover plates will make it possible to predict the nature of the fracture and design equally strong joints.


2020 ◽  
Vol 86 (5) ◽  
pp. 43-51
Author(s):  
V. M. Matyunin ◽  
A. Yu. Marchenkov ◽  
N. Abusaif ◽  
P. V. Volkov ◽  
D. A. Zhgut

The history of appearance and the current state of instrumented indentation are briefly described. It is noted that the materials instrumented indentation methods using a pyramid and ball indenters are actively developing and are currently regulated by several Russian and international standards. These standards provide formulas for calculating the Young’s modulus and hardness at maximum indentation load. Instrumented indentation diagrams «load F – displacement α» of a ball indenter for metallic materials were investigated. The special points on the instrumented indentation diagrams «F – α» loading curves in the area of elastic into elastoplastic deformation transition, and in the area of stable elastoplastic deformation are revealed. A loading curve area with the load above which the dF/dα begins to decrease is analyzed. A technique is proposed for converting «F – α» diagrams to «unrestored Brinell hardness HBt – relative unrestored indent depth t/R» diagrams. The elastic and elastoplastic areas of «HBt – t/R» diagrams are described by equations obtained analytically and experimentally. The materials strain hardening parameters during ball indentation in the area of elastoplastic and plastic deformation are proposed. The similarity of «HBt – t/R» indentation diagram with the «stress σ – strain δ» tensile diagrams containing common zones and points is shown. Methods have been developed for determining hardness at the elastic limit, hardness at the yield strength, and hardness at the ultimate strength by instrumented indentation with the equations for their calculation. Experiments on structural materials with different mechanical properties were carried out by instrumented indentation. The values of hardness at the elastic limit, hardness at the yield strength and hardness at the ultimate strength are determined. It is concluded that the correlations between the elastic limit and hardness at the elastic limit, yield strength and hardness at the yield strength, ultimate tensile strength and hardness at the ultimate strength is more justified, since the listed mechanical characteristics are determined by the common special points of indentation diagrams and tensile tests diagrams.


Sign in / Sign up

Export Citation Format

Share Document