scholarly journals Triple crossing positivity bounds for multi-field theories

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Zong-Zhe Du ◽  
Cen Zhang ◽  
Shuang-Yong Zhou

Abstract We develop a formalism to extract triple crossing symmetric positivity bounds for effective field theories with multiple degrees of freedom, by making use of su symmetric dispersion relations supplemented with positivity of the partial waves, st null constraints and the generalized optical theorem. This generalizes the convex cone approach to constrain the s2 coefficient space to higher orders. Optimal positive bounds can be extracted by semi-definite programs with a continuous decision variable, compared with linear programs for the case of a single field. As an example, we explicitly compute the positivity constraints on bi-scalar theories, and find all the Wilson coefficients can be constrained in a finite region, including the coefficients with odd powers of s, which are absent in the single scalar case.

Particles ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 245-271 ◽  
Author(s):  
Andrey Grozin

This paper represents a pedagogical introduction to low-energy effective field theories. In some of them, heavy particles are “integrated out” (a typical example—the Heisenberg–Euler EFT); in some, heavy particles remain but some of their degrees of freedom are “integrated out” (Bloch–Nordsieck EFT). A large part of these lectures is, technically, in the framework of QED. QCD examples, namely decoupling of heavy flavors and HQET, are discussed only briefly. However, effective field theories of QCD are very similar to the QED case, and there are just some small technical complications: more diagrams, color factors, etc. The method of regions provides an alternative view at low-energy effective theories; this is also briefly introduced.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Scott Melville ◽  
Enrico Pajer

Abstract Primordial perturbations in our universe are believed to have a quantum origin, and can be described by the wavefunction of the universe (or equivalently, cosmological correlators). It follows that these observables must carry the imprint of the founding principle of quantum mechanics: unitary time evolution. Indeed, it was recently discovered that unitarity implies an infinite set of relations among tree-level wavefunction coefficients, dubbed the Cosmological Optical Theorem. Here, we show that unitarity leads to a systematic set of “Cosmological Cutting Rules” which constrain wavefunction coefficients for any number of fields and to any loop order. These rules fix the discontinuity of an n-loop diagram in terms of lower-loop diagrams and the discontinuity of tree-level diagrams in terms of tree-level diagrams with fewer external fields. Our results apply with remarkable generality, namely for arbitrary interactions of fields of any mass and any spin with a Bunch-Davies vacuum around a very general class of FLRW spacetimes. As an application, we show how one-loop corrections in the Effective Field Theory of inflation are fixed by tree-level calculations and discuss related perturbative unitarity bounds. These findings greatly extend the potential of using unitarity to bootstrap cosmological observables and to restrict the space of consistent effective field theories on curved spacetimes.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 253
Author(s):  
David R. Junior ◽  
Luis E. Oxman ◽  
Gustavo M. Simões

In this review, we discuss the present status of the description of confining flux tubes in SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on three main pillars: modeling in the continuum the ensemble components detected in the lattice, the derivation of effective field representations, and contrasting the associated properties with Monte Carlo lattice results. The integration of the present knowledge about these points is essential to get closer to a unified physical picture for confinement. Here, we shall emphasize the last advances, which point to the importance of including the non-oriented center-vortex component and non-Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs are responsible for the emergence of topological solitons and the possibility of accommodating the asymptotic scaling properties of the confining string tension.


Author(s):  
Zening Lin ◽  
Tao Jiang ◽  
Jianzhong Shang

Abstract In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored. Graphic abstract


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Tomáš Brauner

Abstract We initiate the classification of nonrelativistic effective field theories (EFTs) for Nambu-Goldstone (NG) bosons, possessing a set of redundant, coordinate-dependent symmetries. Similarly to the relativistic case, such EFTs are natural candidates for “exceptional” theories, whose scattering amplitudes feature an enhanced soft limit, that is, scale with a higher power of momentum at long wavelengths than expected based on the mere presence of Adler’s zero. The starting point of our framework is the assumption of invariance under spacetime translations and spatial rotations. The setup is nevertheless general enough to accommodate a variety of nontrivial kinematical algebras, including the Poincaré, Galilei (or Bargmann) and Carroll algebras. Our main result is an explicit construction of the nonrelativistic versions of two infinite classes of exceptional theories: the multi-Galileon and the multi-flavor Dirac-Born-Infeld (DBI) theories. In both cases, we uncover novel Wess-Zumino terms, not present in their relativistic counterparts, realizing nontrivially the shift symmetries acting on the NG fields. We demonstrate how the symmetries of the Galileon and DBI theories can be made compatible with a nonrelativistic, quadratic dispersion relation of (some of) the NG modes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Randy Lemons ◽  
Wei Liu ◽  
Josef C. Frisch ◽  
Alan Fry ◽  
Joseph Robinson ◽  
...  

AbstractThe structural versatility of light underpins an outstanding collection of optical phenomena where both geometrical and topological states of light can dictate how matter will respond or display. Light possesses multiple degrees of freedom such as amplitude, and linear, spin angular, and orbital angular momenta, but the ability to adaptively engineer the spatio-temporal distribution of all these characteristics is primarily curtailed by technologies used to impose any desired structure to light. We demonstrate a laser architecture based on coherent beam combination offering integrated spatio-temporal field control and programmability, thereby presenting unique opportunities for generating light by design to exploit its topology.


AIP Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 075306
Author(s):  
Ruikun Niu ◽  
Yu Guo

Sign in / Sign up

Export Citation Format

Share Document