scholarly journals Safety pharmacology of acute LSD administration in healthy subjects

Author(s):  
Friederike Holze ◽  
Toya V. Caluori ◽  
Patrick Vizeli ◽  
Matthias E. Liechti

Abstract Rationale Lysergic acid diethylamide (LSD) is used in psychiatric and psychological research and investigated as a potential treatment for medical and psychiatric disorders, including depression, anxiety, and cluster headache. Objectives Safety data on clinical safety are available from small studies but not from larger samples. We report safety pharmacology data from a large pooled study sample on acute effects of LSD in healthy subjects. Methods We conducted a pooled analysis of four double-blind, randomized, placebo-controlled, crossover studies that included a total of 83 healthy subjects and 131 single-dose administrations of LSD. LSD administrations were matched to dose groups according to measured LSD peak plasma concentrations to adjust for uncertainties in the correct LSD dose in some studies. Single doses were 25, 50, 100, and 200 µg of LSD base. We investigated subjective effects (self-rated any drug effect, good drug effect, bad drug effect, and anxiety), blood pressure, heart rate, body temperature, duration of the acute LSD response, acute (12 h) and subacute (24 h) adverse effects, reports of flashbacks, and liver and kidney function before and after the studies. Results LSD dose-dependently increased subjective, physiologic, and adverse effects. The dose–response curves for the proportions of subjects with a certain amount of a subjective effect were steeper and reached a higher maximum for positive acute subjective effects compared with negative acute subjective effects. Maximal ratings of > 50% good drug effects were reached in 37%, 91%, 96%, and 91% of the LSD administrations at 25, 50, 100, and 200 µg. Maximal ratings of > 50% bad drug effects were reached in 0%, 9%, 27%, 31% at 25, 50, 100, and 200 µg, respectively. Mean ratings of Oceanic Boundlessness were 10%, 25%, 41%, and 44%, and mean ratings of Anxious Ego-Dissolution were 3.4%, 13%, 20%, and 22% at 25, 50, 100, and 200 µg, respectively. The physiologic effects of LSD were moderate. None of the subjects had systolic blood pressure > 180 mmHg at any time. Peak heart rate > 100 beats/min was observed in 0%, 6%, 20%, and 25% of the subjects at 25, 50, 100, and 200 µg, respectively. Maximal heart rates of 129 and 121 beats/min were observed in one subject at the 50 and 200 µg doses, respectively. Peak body temperature > 38° was observed in 0%, 11%, 7%, and 34% at 25, 50, 100, and 200 µg, respectively. Mean acute adverse effect scores on the List of Complaints were 5.6, 9.2, 12, and 13 at 25, 50, 100, and 200 µg, respectively. Kidney and liver function parameters were unaltered. Six subjects reported transient flashback phenomena. Conclusions The single-dose administration of LSD is safe in regard to acute psychological and physical harm in healthy subjects in a controlled research setting.

2017 ◽  
Vol 31 (5) ◽  
pp. 576-588 ◽  
Author(s):  
Patrick Vizeli ◽  
Matthias E Liechti

3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is being investigated in MDMA-assisted psychotherapy. The present study characterized the safety pharmacology of single-dose administrations of MDMA (75 or 125 mg) using data from nine double-blind, placebo-controlled, crossover studies performed in the same laboratory in a total of 166 healthy subjects. The duration of the subjective effects was 4.2 ± 1.3 h (range: 1.4–8.2 h). The 125 mg dose of MDMA produced greater ‘good drug effect’ ratings than 75 mg. MDMA produced moderate and transient ‘bad drug effect’ ratings, which were greater in women than in men. MDMA increased systolic blood pressure to >160 mmHg, heart rate >100 beats/min, and body temperature >38°C in 33%, 29% and 19% of the subjects, respectively. These proportions of subjects with hypertension (>160 mmHg), tachycardia, and body temperature >38°C were all significantly greater after 125 mg MDMA compared with the 75 mg dose. Acute and subacute adverse effects of MDMA as assessed by the List of Complaints were dose-dependent and more frequent in females. MDMA did not affect liver or kidney function at EOS 29 ± 22 days after use. No serious adverse events occurred. In conclusion, MDMA produced predominantly acute positive subjective drug effects. Bad subjective drug effects and other adverse effects were significantly more common in women. MDMA administration was overall safe in physically and psychiatrically healthy subjects and in a medical setting. However, the risks of MDMA are likely higher in patients with cardiovascular disease and remain to be investigated in patients with psychiatric disorders.


2020 ◽  
Vol 176 (1) ◽  
pp. 224-235 ◽  
Author(s):  
Philip Milliken ◽  
Mike Aylott ◽  
Nick Edmunds ◽  
Steven Engle ◽  
Lorna Ewart ◽  
...  

Abstract Integrating nonclinical in vitro, in silico, and in vivo datasets holistically can improve hazard characterization and risk assessment. In pharmaceutical development, cardiovascular liabilities are a leading cause of compound attrition. Prior to clinical studies, functional cardiovascular data are generated in single-dose safety pharmacology telemetry studies, with structural pathology data obtained from repeat-dose toxicology studies with limited concurrent functional endpoints, eg, electrocardiogram via jacketed telemetry. Relationships between datasets remain largely undetermined. To address this gap, a cross-pharma collaboration collated functional and structural data from 135 compounds. Retrospective functional data were collected from good laboratory practice conscious dog safety pharmacology studies: effects defined as hemodynamic blood pressure or heart rate changes. Morphologic pathology findings (mainly degeneration, vacuolation, inflammation) from related toxicology studies in the dog (3–91 days repeat-dosing) were reviewed, harmonized, and location categorized: cardiac muscle (myocardium, epicardium, endocardium, unspecified), atrioventricular/aortic valves, blood vessels. The prevalence of cardiovascular histopathology changes was 11.1% of compounds, with 53% recording a functional blood pressure or heart rate change. Correlations were assessed using the Mantel-Haenszel Chi-square trend test, identifying statistically significant associations between cardiac muscle pathology and (1) decreased blood pressure, (2) increased heart rate, and between cardiovascular vessel pathology and increased heart rate. Negative predictive values were high, suggesting few compounds cause repeat-dose cardiovascular structural change in the absence of functional effects in single-dose safety pharmacology studies. Therefore, observed functional changes could prompt moving (sub)chronic toxicology studies forward, to identify cardiovascular liabilities earlier in development, and reduce late-stage attrition.


2016 ◽  
Vol 29 (6) ◽  
pp. 765-773 ◽  
Author(s):  
Ana Amélia Machado DUARTE ◽  
Cristiano MOSTARDA ◽  
Maria Claudia IRIGOYEN ◽  
Katya RIGATTO

ABSTRACT Objective: The aim of this study was to investigate the acute effect of a single dose of dark chocolate (70% cocoa) on blood pressure and heart rate variability. Methods: Thirty-one healthy subjects (aged 18-25 years; both sexes) were divided into two groups: 10 subjects in the white chocolate (7.4 g) group and 21 in the dark chocolate (10 g) group; measurements were performed at the university's physiology lab. An electrocardiogram measured the sympathovagal balance by spectral and symbolic analysis. Results: A single dose of dark chocolate significantly reduced systolic blood pressure and heart rate. After consuming 10 g of dark chocolate, significant increases were observed for heart rate variability, standard deviation of RR intervals standard deviation of all NN intervals, square root of the mean squared differences between adjacent normal RR intervals root mean square of successive differences, and an increase in the high frequency component in absolute values, representing the parasympathetic modulation. Conclusion: In conclusion the importance of our results lies in the magnitude of the response provoked by a single dose of cocoa. Just 10 g of cocoa triggered a significant increase in parasympathetic modulation and heart rate variability. These combined effects can potentially increase life expectancy because a reduction in heart rate variability is associated with several cardiovascular diseases and higher mortality.


2009 ◽  
Vol 23 (3) ◽  
pp. 104-112 ◽  
Author(s):  
Stefan Duschek ◽  
Heike Heiss ◽  
Boriana Buechner ◽  
Rainer Schandry

Recent studies have revealed evidence for increased pain sensitivity in individuals with chronically low blood pressure. The present trial explored whether pain sensitivity can be reduced by pharmacological elevation of blood pressure. Effects of the sympathomimetic midodrine on threshold and tolerance to heat pain were examined in 52 hypotensive persons (mean blood pressure 96/61 mmHg) based on a randomized, placebo-controlled, double-blind design. Heat stimuli were applied to the forearm via a contact thermode. Confounding of drug effects on pain perception with changes in skin temperature, temperature sensitivity, and mood were statistically controlled for. Compared to placebo, higher pain threshold and tolerance, increased blood pressure, as well as reduced heart rate were observed under the sympathomimetic condition. Increases in systolic blood pressure between points of measurement correlated positively with increases in pain threshold and tolerance, and decreases in heart rate were associated with increases in pain threshold. The findings underline the causal role of hypotension in the augmented pain sensitivity related to this condition. Pain reduction as a function of heart rate decrease suggests involvement of a baroreceptor-related mechanism in the pain attrition. The increased proneness of persons with chronic hypotension toward clinical pain is discussed.


2012 ◽  
Vol 47 (2) ◽  
pp. 184-190 ◽  
Author(s):  
Masaki Iguchi ◽  
Andrew E. Littmann ◽  
Shuo-Hsiu Chang ◽  
Lydia A. Wester ◽  
Jane S. Knipper ◽  
...  

Context: Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. Objective: To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extra-cellular protein responses of exercise. Design: Randomized controlled trial. Setting: University research laboratory. Patients or Other Participants: Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Intervention(s): Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Main Outcome Measure(s): Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. Results: After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F6,24 = 186, P < .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F6,24 = 10.1, P < .001) and 5 mm Hg (F6,24 = 5.4, P < .001), respectively. Norepinephrine (F1,12 = 12.1, P = .004) and prolactin (F1,12 = 30.2, P < .001) increased in the plasma (58% and 285%, respectively) (P < .05). The HSP72 (F1,12 = 44.7, P < .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. Conclusions: We found that whole-body heat stress triggers some of the physiologic responses observed with exercise. Future studies are necessary to investigate whether carefully prescribed heat stress constitutes a method to augment or supplement exercise.


2014 ◽  
Vol 112 (9) ◽  
pp. 2199-2217 ◽  
Author(s):  
Nabil El Bitar ◽  
Bernard Pollin ◽  
Daniel Le Bars

In thermal neutral condition, rats display cyclic variations of the vasomotion of the tail and paws, synchronized with fluctuations of blood pressure, heart rate, and core body temperature. “On-” and “off-” cells located in the rostral ventromedial medulla, a cerebral structure implicated in somatic sympathetic drive, 1) exhibit similar spontaneous cyclic activities in antiphase and 2) are activated and inhibited by thermal nociceptive stimuli, respectively. We aimed at evaluating the implication of such neurons in autonomic regulation by establishing correlations between their firing and blood pressure, heart rate, and skin and core body temperature variations. When, during a cycle, a relative high core body temperature was reached, the on-cells were activated and within half a minute, the off-cells and blood pressure were depressed, followed by heart rate depression within a further minute; vasodilatation of the tail followed invariably within ∼3 min, often completed with vasodilatation of hind paws. The outcome was an increased heat loss that lessened the core body temperature. When the decrease of core body temperature achieved a few tenths of degrees, sympathetic activation switches off and converse variations occurred, providing cycles of three to seven periods/h. On- and off-cell activities were correlated with inhibition and activation of the sympathetic system, respectively. The temporal sequence of events was as follows: core body temperature → on-cell → off-cell ∼ blood pressure → heart rate → skin temperature → core body temperature. The function of on- and off-cells in nociception should be reexamined, taking into account their correlation with autonomic regulations.


2017 ◽  
Vol 17 (2) ◽  
pp. 5-14 ◽  
Author(s):  
Milana Drumond Ramos Santana ◽  
Eli Carlos Martiniano ◽  
Larissa Raylane Lucas Monteiro ◽  
Maria Do Socorro Santos De Oliveira ◽  
Vitor E. Valenti ◽  
...  

AbstractIntroduction: There is an increase in level of stress in the general population because of the social, personal and professional demands. Currently, there are only simple tools that can safely measure this stress such as levels of cortisol and heart rate variability (HRV). Objective: To analyze the relationship between salivary cortisol and the cardiac autonomic modulation. Methods: A total of fifty-one male and female subjects between 18 and 40 years old were evaluated. Saliva collection was achieved for the salivary cortisol dosage. The collection was performed through the SalivetteR tube. After this collection, the median cortisol levels (0.24 ug/dl) were analyzed and the volunteers were divided into two groups: i) cortisol below the mediane ii) cortisol above the median. After this division, each group consisted of 25 volunteers and then was verified the following information: age, gender, weight, height, body mass index (BMI), blood pressure. Shortly thereafter was assessment of cardiac autonomic modulation por meio da HRV. The Polar RS800cx heart rate receiver was placed on the chest of the volunteers, in the vicinity of the distal third of the sternum. The volunteers were instructed to remain in rest with spontaneous breathing in dorsal position for 20 minutes. HRV analysis included geometric, time and frequency domain indices. Results: There were no statistical differences for the two groups regarding systolic and diastolic blood pressure, heart rate, RR intervals or linear and frequency indices for the volunteers. In addition, also there was no correlation the cortisol with the analyzed variables (SAP, p=0.460; DAP, p = 0.270; HR, p = 0.360; RR, p = 0.380; SDNN, p = 0.510; rMSSD, p = 0.660; pNN50, p = 0.820; RRtri, p = 0.170; TINN, p = 0.470; SD1, p = 0.650; SD2, p = 0.500; LF [ms2], p = 0.880; LF [nu], p = 0.970; HF [ms2], p = 0.870; HF [nu], p = 0.960; LF/HF, p = 0.380 Conclusion: Heart rate variability autonomic control was unchanged in healthy subjects with physiological distribution of salivary cortisol levels. There was no association between normal salivary cortisol and resting autonomic regulation of heart rate.


2021 ◽  
pp. 24-25
Author(s):  
Smriti Kumari ◽  
Manoj Kumar Paswan ◽  
Nishat Ahamad

The thyroid gland, usually located below and anterior to the larynx, consists of two bulky lateral lobes connected by a relatively thin isthmus. The thyroid is divided by thin brous septae into lobules composed of about 20 to 40 evenly dispersed follicles, lined by a cuboidal to low columnar [1] epithelium, and lled with PAS-positive thyroglobulin. The thyroid secretes hormones that control the heart rate, blood pressure, body temperature and basal metabolic rate


Sign in / Sign up

Export Citation Format

Share Document