scholarly journals Solubilization of struvite and biorecovery of cerium by Aspergillus niger

Author(s):  
Xia Kang ◽  
Laszlo Csetenyi ◽  
Xiang Gao ◽  
Geoffrey Michael Gadd

Abstract Cerium has many modern applications such as in renewable energies and the biosynthesis of nanomaterials. In this research, natural struvite was solubilized by Aspergillus niger and the biomass-free struvite leachate was investigated for its ability to recover cerium. It was shown that struvite was completed solubilized following 2 weeks of fungal growth, which released inorganic phosphate (Pi) from the mineral by the production of oxalic acid. Scanning electron microscopy (SEM) showed that crystals with distinctive morphologies were formed in the natural struvite leachate after mixing with Ce3+. Energy-dispersive X-ray analysis (EDXA), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of cerium phosphate hydrate [Ce(PO4)·H2O] at lower Ce concentrations and a mixture of phosphate and cerium oxalate decahydrate [Ce2(C2O4)3·10H2O] at higher Ce concentrations. The formation of these biogenic Ce minerals leads to the removal of > 99% Ce from solution. Thermal decomposition experiments showed that the biogenic Ce phosphates could be transformed into a mixture of CePO4 and CeO2 (cerianite) after heat treatment at 1000 °C. These results provide a new perspective of the fungal biotransformation of soluble REE species using struvite leachate, and also indicate the potential of using the recovered REE as biomaterial precursors with possible applications in the biosynthesis of novel nanomaterials, elemental recycling and biorecovery. Key points • Cerium was recovered using a struvite leachate produced by A. niger. • Oxalic acid played a major role in struvite solubilization and Ce phosphate biorecovery. • Resulting nanoscale mineral products could serve as a precursor for Ce oxide synthesis.

2010 ◽  
Vol 12 (4) ◽  
pp. 53-57 ◽  
Author(s):  
Agata Markowska-Szczupak ◽  
Krzysztof Ulfig ◽  
Barbara Grzmil ◽  
Antoni Morawski

A preliminary study on antifungal effect of TiO2-based paints in natural indoor light The antifungal activity of four commercial photocatalytic paints (KEIM Ecosil ME, Titanium FA, Photo Silicate and Silicate D) in natural indoor light was investigated. The paints contained TiO2 in rutile and anatase crystalline forms as evidenced by means of the X-ray diffraction analysis. In most cases the paints inhibited growth of fungi viz. Trichoderma viride, Aspergillus niger, Coonemeria crustacea, Eurotium herbariorum, and Dactylomyces sp. The KEIM Ecosil ME paint displayed the highest antifungal effect in the light, which could be explained with the highest anatase content. The paint antifungal activity and the fungal sensitivity to the TiO2-mediated photocatalytic reaction both decreased in the following orders: KEIM Ecosil ME > Titanium FA > Photo Silicate > Silicate D and T. viride > Dactylomyces sp. > A. niger > E. herbariorum.


2013 ◽  
Vol 741 ◽  
pp. 84-89 ◽  
Author(s):  
Sangworn Wantawee ◽  
Pacharee Krongkitsiri ◽  
Tippawan Saipin ◽  
Buagun Samran ◽  
Udom Tipparach

Titania nanotubes (TiO2NTs) working electrodes for hydrogen production by photoelectrocatalytic water splitting were synthesized by means of anodization method. The electrolytes were the mixtures of oxalic acid (H2C2O4), ammonium fluoride (NH4F), and sodium sulphate (VI) (Na2SO4) with different pHs. A constant dc power supply at 20 V was used as anodic voltage. The samples were annealed at 450 °C for 2 hrs. Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) were used to characterized TiO2NTs microstructure. TiO2NTs with diameter of 100 nm were obtained when pH 3 electrolyte consisting of 0.08 M oxalic acid, 0.5 wt% NH4F, and 1.0 wt% Na2SO4was used. Without external applied potential, the maximum photocurrent density was 2.8 mA/cm2under illumination of 100 mW/cm2. Hydrogen was generated at an overall photoconversion efficiency of 3.4 %.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3732
Author(s):  
José Miguel Hidalgo Herrador ◽  
Jakub Fratczak ◽  
Zdeněk Tišler ◽  
Hector de Paz Carmona ◽  
Romana Velvarská

The use of renewable local raw materials to produce fuels is an important step toward optimal environmentally friendly energy consumption. In addition, the use of these sources together with fossil fuels paves the way to an easier transition from fossil to renewable fuels. The use of simple organic acids as hydrogen donors is another alternative way to produce fuel. The present work reports the use of oxalic acid as a hydrogen donor for the catalytic hydrodesulfurization of atmospheric gas oil and the deoxygenation of rapeseed oil at 350 °C. For this process, one commercial NiW/SiO2–Al2O3 solid and two NiW/modified phonolite catalysts were used, namely Ni (5%) W (10%)/phonolite treated with HCl, and Ni (5%) W (10%)/phonolite treated with oxalic acid. The fresh phonolite catalysts were characterized by Hg porosimetry and N2 physisorption, ammonia temperature programmed desorption (NH3-TPD), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The sulfided metal phonolite catalysts were characterized by XRD and XRF. Hydrodesulfurization led to a decrease in sulfur content from 1 to 0.5 wt% for the phonolite catalysts and to 0.8 wt% when the commercial catalyst was used. Deoxygenation led to the production of 15 and 65 wt% paraffin for phonolite and commercial solids, respectively. The results demonstrate the potential of using oxalic acid as a hydrogen donor in hydrotreating reactions.


2012 ◽  
Vol 554-556 ◽  
pp. 792-795
Author(s):  
Hai Xing Liu ◽  
Jing Wang ◽  
Fang Fang Jian ◽  
Hui Juan Yue ◽  
Guang Zeng ◽  
...  

A new Eu complex [Eu (C3O9H6)] ·2(H2O) has been synthesized from a hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Eu atom is coordinated by eight O atoms. The molecular is antisymmetric structure by the C3-C3 axis. It is striking that the structure of the complex exhibits extensive O-H…O hydrogen-bonding interactions.


2020 ◽  
Vol 20 (9) ◽  
pp. 5671-5675
Author(s):  
Sang Chul Jung ◽  
Min Ki Kim ◽  
Young-Kwon Park ◽  
Ho Young Jung ◽  
Wang Geun Shim ◽  
...  

The catalytic oxidation of benzene and toluene (VOCs) was carried out in order to assess the properties and catalytic activities of spent vanadium-based catalyst and that modified with copper and manganese. The properties of the prepared catalysts were characterized by the Brunauer Emmett Teller (BET) surface area method as well as X-ray diffraction (XRD), Attenuated total reflection-Fourier transform infrared (ATR-FTIR), and Scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) analyses. The experimental results showed that oxalic acid treatment significantly affected the activity of the spent vanadium-based catalyst, ultimately attributing to the removal of catalyst poison such as sulfur and the even redistribution of catalyst components. Moreover, the addition of copper or manganese to the spent vanadium base catalyst treated with oxalic acid (SVO) enhanced its catalytic activity.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4624 ◽  
Author(s):  
Jaekwang Kim ◽  
Hyunchul Kang ◽  
Keebum Hwang ◽  
Songhun Yoon

Herein, thermal decomposition experiments of lithium peroxide (Li2O2) were performed to prepare a precursor (Li2O) for sacrificing cathode material, Li2NiO2. The Li2O2 was prepared by a hydrometallurgical reaction between LiOH·H2O and H2O2. The overall reaction during annealing was found to involve the following three steps: (1) dehydration of LiOH·H2O, (2) decomposition of Li2O2, and (3) pyrolysis of the remaining anhydrous LiOH. This stepwise reaction was elucidated by thermal gravimetric and quantitative X-ray diffraction analyses. Furthermore, over-lithiated lithium nickel oxide (Li2NiO2) using our lithium precursor was synthesized, which exhibited a larger yield of 90.9% and higher irreversible capacity of 261 to 265 mAh g−1 than the sample prepared by commercially purchased Li2O (45.6% and 177 to 185 mAh g−1, respectively) due to optimal powder preparation conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bianca Palma Santana ◽  
Fernanda Nedel ◽  
Evandro Piva ◽  
Rodrigo Varella de Carvalho ◽  
Flávio Fernando Demarco ◽  
...  

We aimed to develop an alginate hydrogel (AH) modified with nano-/microfibers of titanium dioxide (nfTD) and hydroxyapatite (nfHY) and evaluated its biological and chemical properties. Nano-/microfibers of nfTD and nfHY were combined with AH, and its chemical properties were evaluated by FTIR spectroscopy, X-ray diffraction, energy dispersive X-Ray analysis, and the cytocompatibility by the WST-1 assay. The results demonstrate that the association of nfTD and nfHY nano-/microfibers to AH did not modified the chemical characteristics of the scaffold and that the association was not cytotoxic. In the first 3 h of culture with NIH/3T3 cells nfHY AH scaffolds showed a slight increase in cell viability when compared to AH alone or associated with nfTD. However, an increase in cell viability was observed in 24 h when nfTD was associated with AH scaffold. In conclusion our study demonstrates that the combination of nfHY and nfTD nano-/microfibers in AH scaffold maintains the chemical characteristics of alginate and that this association is cytocompatible. Additionally the combination of nfHY with AH favored cell viability in a short term, and the addition of nfTD increased cell viability in a long term.


1998 ◽  
Vol 13 (4) ◽  
pp. 246-248 ◽  
Author(s):  
Nubuo Ishizawa ◽  
Atsushi Saiki ◽  
Kyoji Ohdan ◽  
Mamoru Ai

X-ray powder-diffraction data were collected for a new iron phosphate, Fe(PO4)·0.5H2O, obtained by reducing FePO4 with oxalic acid at 220 °C in the presence of water vapor and oxygen. The crystal system was determined to be orthorhombic with unit-cell parameters a=15.991(6) Å, b=20.156(7) Å, and c=7.223(2) Å.


2011 ◽  
Vol 391-392 ◽  
pp. 377-380
Author(s):  
Guo Jun Li ◽  
Ming Yang ◽  
Hai Li Jing ◽  
Rui Ming Ren

LiFePO4/C composite powders were prepared by a simple reaction of as-synthesized FePO4•2H2O, LiOH•H2O, oxalic acid and citric acid. The influence of oxalic acid and citric acid in different ratios was investigated on morphology and electrochemical performance of LiFePO4/C composite powders. The characterization of the composites included X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD analysis indicates that the material is well crystallized without impurities. The obtained LiFePO4/C composite powders with well dispersion at CA/OA ratio of 1:1.50 and the initial charge capacity reached 159.3 mAhg-1 at 0.1C rate, meanwhile, the particles prepared at 1:0.75 were close to spherical in shape and the specific capacity value was 149.8 mAhg-1 at 0.1C rate, with a slight decrease on greater C-rates reaching 141.3 mAhg-1 at 1C.


1994 ◽  
Vol 346 ◽  
Author(s):  
Liliane G. Hubert-Pfalzgraf ◽  
Florence Labrize ◽  
Herve Guillon ◽  
Patrick Tobaly

ABSTRACTThe fluoroisopropoxide ligand (HFIP) has allowed the synthesis of mixed-metal homoleptic Ba2Y and CuBa alkoxides. However, although these species are all volatile, their poor thermal stability precludes their use as CVD precursors. Their properties have thus been optimized by introduction of 2,2,6,6-tetramethylheptane-3,5-dione (thdH) in the metal coordination sphere. Compounds such as Y2Ba(μ-HFIP)4(thd)4, the first volatile Y-Ba species reported so far, as well as BaCu2(HFIP)4(thd)2 and YCu(HFIP)2(thd)3 have been obtained. These heterometallic ϐdiketonatoalkoxides have been characterized by a variety of techniques including X-ray diffraction, mass spectrometry, vapor pressure measurements and thermogravimetric analysis. Preliminary data on thermal decomposition experiments are given.


Sign in / Sign up

Export Citation Format

Share Document