Aqueous dispersing mechanism study of nonionic polymeric dispersant for organic pigments

Author(s):  
Zhian Pu ◽  
Xin Fan ◽  
Jing Su ◽  
Min Zhu ◽  
Zhenlin Jiang
2019 ◽  
Author(s):  
Huaimin Wang ◽  
Zhaoqianqi Feng ◽  
Weiyi Tan ◽  
Bing Xu

<p>Selectively targeting cell nucleolus remains a challenge. Here we report the first case that D-peptides form membraneless molecular condensates with RNA for targeting cell nucleolus. A D-peptide derivative, enriched with lysine and hydrophobic residues, self-assembles to form nanoparticles, which enter cells through clathrin dependent endocytosis and mainly accumulate at cell nucleolus. Structural analogue of the D-peptide reveals that particle morphology of the assemblies, which depends on the side chain modification, favors the cellular uptake. Contrasting to those of the D-peptide, the assemblies of the corresponding L-enantiomer largely localize in cell lysosomes. Preliminary mechanism study suggests that the D-peptide nanoparticles interact with RNA to form membraneless condensates in the nucleolus, which further induces DNA damage and results in cell death. This work illustrates a new strategy for rationally designing supramolecular assemblies of D-peptides for targeting subcellular organelles.</p>


2019 ◽  
Vol 18 (7) ◽  
pp. 566-577 ◽  
Author(s):  
Xinxin Fu ◽  
Tingting Qin ◽  
Jiayu Yu ◽  
Jie Jiao ◽  
Zhanqiang Ma ◽  
...  

Background: Alzheimer’s disease is one of the most common neurodegenerative diseases in many modern societies. The core pathogenesis of Alzheimer’s disease includes the aggregation of hyperphosphorylated Tau and abnormal Amyloid-β generation. In addition, previous studies have shown that neuroinflammation is one of the pathogenesis of Alzheimer’s disease. Formononetin, an isoflavone compound extracted from Trifolium pratense L., has been found to have various properties including anti-obesity, anti-inflammation, and neuroprotective effects. But there are very few studies on the treatment of Alzheimer’s disease with Formononetin. Objective: The present study focused on the protective activities of Formononetin on a high-fat dietinduced cognitive decline and explored the underlying mechanisms. Methods: Mice were fed with HFD for 10 weeks and intragastric administrated daily with metformin (300 mg/kg) and Formononetin (20 and 40 mg/kg). Results: We found that Formononetin (20, 40 mg/kg) significantly attenuated the learning and memory deficits companied by weight improvement and decreased the levels of blood glucose, total cholesterol and triglyceride in high-fat diet-induced mice. Meanwhile, we observed high-fat diet significantly caused the Tau hyperphosphorylation in the hippocampus of mice, whereas Formononetin reversed this effect. Additionally, Formononetin markedly reduced the levels of inflammation cytokines IL-1β and TNF-α in high-fat diet-induced mice. The mechanism study showed that Formononetin suppressed the pro-inflammatory NF-κB signaling and enhanced the anti-inflammatory Nrf-2/HO-1 signaling, which might be related to the regulation of PGC-1α in the hippocampus of high-fat diet -induced mice. Conclusion: Taken together, our results showed that Formononetin could improve the cognitive function by inhibiting neuroinflammation, which is attributed to the regulation of PGC-1α pathway in HFD-induced mice.


2018 ◽  
Vol 93 (5) ◽  
pp. 603-610 ◽  
Author(s):  
Samia Mathlouthi ◽  
Abderrazek Oueslati ◽  
Bassem Louati

2015 ◽  
Vol 2015 (26) ◽  
pp. 5742-5746 ◽  
Author(s):  
Muqing Chen ◽  
Wangqiang Shen ◽  
Lipiao Bao ◽  
Wenting Cai ◽  
Yunpeng Xie ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Disazoacetoacetanilide pigments, more commonly known as diarylide yellows, are the most important group of yellow classical organic pigments. They were commercialized in the early 20th century many years after the introduction of the structurally related monazoacetoacetanilides (Hansa yellows). The molecules adopt the bis-ketohydrazone tautomeric form. X-ray single crystal structure investigations have provided an insight into the influence of the molecular geometry and crystal packing arrangements in the solid state on the properties of the pigments in application. The synthesis of diarylide pigments is relatively straightforward, the conditions essentially following those used for the corresponding monoazo pigments, so that the products are economically priced. In the case of these disazo pigments, suitable aromatic amines (1 mol) are bis-diazotized and the resulting bis-diazonium salts reacted with acetoacetanilide coupling components (2 mol), the two azo coupling reactions occurring at the same time. They are by far the dominant group of yellow pigments used in printing inks, well-suited for most standard process yellow inks. They were formerly important in the coloration of plastics but are no longer recommended for polymers processed above 200 °C, under which conditions toxic decomposition products are formed. Diarylide yellow pigments are characterized by high color strength, good to excellent solvent fastness, and good chemical stability, although they generally show inferior lightfastness.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Perylenes and perinones are separate groups of pigments categorized within the carbonyl chemical class. The two pigment groups show similarities, for example, in their chemical structural features and, to an extent, in their technical and application properties as high-performance organic pigments. Perylenes constitute a series of firmly established high-performance pigments, offering red and violet colors, and also extending to black. Synthetically, they are derived from perylene-1,4,5,8-tetracarboxylic acid. The perylenes tend to be quite expensive pigments, but their high levels of fastness properties mean that they are suitable for highly demanding applications. In particular, they offer very high heat stability. Two perinone pigments are used commercially. In their synthesis from naphthalene-1,4,5,8-tetracarboxylic acid, they are formed as mixtures of the two isomers, which can be separated. The trans isomer, CI Pigment Orange 43, is a highly important commercial pigment, especially for plastics, while the cis isomer, CI Pigment Red 194, is bordeaux in color and is of much lesser importance. The perinone, CI Pigment Orange 43, provides a brilliant orange color and has very good fastness properties. Its commercial manufacture involves a challenging multistage procedure and consequently it is one of the most expensive organic pigments on the market.


Sign in / Sign up

Export Citation Format

Share Document