Micrococcus luteus LS570 promotes root branching in Arabidopsis via decreasing apical dominance of the primary root and an enhanced auxin response

PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Elizabeth García-Cárdenas ◽  
Randy Ortiz-Castro ◽  
León Francisco Ruiz-Herrera ◽  
Eduardo Valencia-Cantero ◽  
José López-Bucio
Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1722
Author(s):  
Lidiya Vysotskaya ◽  
Guzel Akhiyarova ◽  
Arina Feoktistova ◽  
Zarina Akhtyamova ◽  
Alla Korobova ◽  
...  

Although changes in root architecture in response to the environment can optimize mineral and water nutrient uptake, mechanisms regulating these changes are not well-understood. We investigated whether P deprivation effects on root development are mediated by abscisic acid (ABA) and its interactions with other hormones. The ABA-deficient barley mutant Az34 and its wild-type (WT) were grown in P-deprived and P-replete conditions, and hormones were measured in whole roots and root tips. Although P deprivation decreased growth in shoot mass similarly in both genotypes, only the WT increased primary root length and number of lateral roots. The effect was accompanied by ABA accumulation in root tips, a response not seen in Az34. Increased ABA in P-deprived WT was accompanied by decreased concentrations of cytokinin, an inhibitor of root extension. Furthermore, P-deficiency in the WT increased auxin concentration in whole root systems in association with increased root branching. In the ABA-deficient mutant, P-starvation failed to stimulate root elongation or promote branching, and there was no decline in cytokinin and no increase in auxin. The results demonstrate ABA’s ability to mediate in root growth responses to P starvation in barley, an effect linked to its effects on cytokinin and auxin concentrations.


Development ◽  
2015 ◽  
Vol 142 (8) ◽  
pp. 1437-1446 ◽  
Author(s):  
A. Rodriguez-Villalon ◽  
B. Gujas ◽  
R. van Wijk ◽  
T. Munnik ◽  
C. S. Hardtke
Keyword(s):  

1972 ◽  
Vol 14 (4) ◽  
pp. 249-253 ◽  
Author(s):  
Albína Klasová ◽  
J. Kolbk ◽  
J. Klas

2008 ◽  
Vol 21 (10) ◽  
pp. 1349-1358 ◽  
Author(s):  
Jessica N. Brazelton ◽  
Emily E. Pfeufer ◽  
Teresa A. Sweat ◽  
Brian B. McSpadden Gardener ◽  
Catharina Coenen

Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter∷luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD– mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway.


2019 ◽  
Vol 70 (1) ◽  
pp. 465-488 ◽  
Author(s):  
Hans Motte ◽  
Steffen Vanneste ◽  
Tom Beeckman

In order to optimally establish their root systems, plants are endowed with several mechanisms to use at distinct steps during their development. In this review, we zoom in on the major processes involved in root development and detail important new insights that have been generated in recent studies, mainly using the Arabidopsis root as a model. First, we discuss new insights in primary root development with the characterization of tissue-specific transcription factor complexes and the identification of non-cell-autonomous control mechanisms in the root apical meristem. Next, root branching is discussed by focusing on the earliest steps in the development of a new lateral root and control of its postemergence growth. Finally, we discuss the impact of phosphate, nitrogen, and water availability on root development and summarize current knowledge about the major molecular mechanisms involved.


2011 ◽  
Vol 49 (12) ◽  
pp. 1456-1464 ◽  
Author(s):  
Teresita de Jesús Celis-Arámburo ◽  
Mildred Carrillo-Pech ◽  
Lizbeth A. Castro-Concha ◽  
María de Lourdes Miranda-Ham ◽  
Manuel Martínez-Estévez ◽  
...  

2020 ◽  
Vol 61 (4) ◽  
pp. 838-850
Author(s):  
Aoi Inaji ◽  
Atsushi Okazawa ◽  
Taiki Taguchi ◽  
Masatoshi Nakamoto ◽  
Nao Katsuyama ◽  
...  

Abstract Rhizotaxis is established under changing environmental conditions via periodic priming of lateral root (LR) initiation at the root tips and adaptive LR formation along the primary root (PR). In contrast to the adaptable LR formation in response to nutrient availability, there is little information on root development during interactions with beneficial microbes. The Arabidopsis root system is characteristically modified upon colonization by the root endophytic fungus Serendipita indica, accompanied by a marked stimulation of LR formation and the inhibition of PR growth. This root system modification has been attributed to endophyte-derived indole-3-acetic acid (IAA). However, it has yet to be clearly explained how fungal IAA affects the intrinsic LR formation process. In this study, we show that diffusible compounds (chemical signals) other than IAA are present in the coculture medium of Arabidopsis and S. indica and induce auxin-responsive DR5::GUS expression in specific sections within the pericycle layer. The DR5::GUS expression was independent of polar auxin transport and the major IAA biosynthetic pathways, implicating unidentified mechanisms responsible for the auxin response and LR formation. Detailed metabolite analysis revealed the presence of multiple compounds that induce local auxin responses and LR formation. We found that benzoic acid (BA) cooperatively acted with exogenous IAA to generate a local auxin response in the pericycle layer, suggesting that BA is one of the chemical signals involved in adaptable LR formation. Identification and characterization of the chemical signals will contribute to a greater understanding of the molecular mechanisms underlying adaptable root development and to unconventional technologies for sustainable agriculture.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Fengyang Xu ◽  
Shuqi Xue ◽  
Limeng Deng ◽  
Sufen Zhang ◽  
Yaxuan Li ◽  
...  

Abstract Background Auxins play key roles in the phytohormone network. Early auxin response genes in the AUX/IAA, SAUR, and GH3 families show functional redundancy, which makes it very difficult to study the functions of individual genes based on gene knockout analysis or transgenic technology. As an alternative, chemical genetics provides a powerful approach that can be used to address questions relating to plant hormones. Results By screening a small-molecule chemical library of compounds that can induce abnormal seedling and vein development, we identified and characterized a piperazine compound 1-[(4-bromophenoxy) acetyl]-4-[(4-fluorophenyl) sulfonyl] piperazine (ASP). The Arabidopsis DR5::GFP line was used to assess if the effects mentioned were correlated with the auxin response, and we accordingly verified that ASP altered the auxin-related pathway. Subsequently, we examined the regulatory roles of ASP in hypocotyl and root development, auxin distribution, and changes in gene expression. Following ASP treatment, we detected hypocotyl elongation concomitant with enhanced cell elongation. Furthermore, seedlings showed retarded primary root growth, reduced gravitropism and increased root hair development. These phenotypes were associated with an increased induction of DR5::GUS expression in the root/stem transition zone and root tips. Auxin-related mutants including tir1–1, aux1–7 and axr2–1 showed phenotypes with different root-development pattern from that of the wild type (Col-0), and were insensitive to ASP. Confocal images of propidium iodide (PI)-stained root tip cells showed no detectable damage by ASP. Furthermore, RT-qPCR analyses of two other genes, namely, Ethylene Response Factor (ERF115) and Mediator 18 (MED18), which are related to cell regeneration and damage, indicated that the ASP inhibitory effect on root growth was not attributable to toxicity. RT-qPCR analysis provided further evidence that ASP induced the expression of early auxin-response-related genes. Conclusions ASP altered the auxin response pathway and regulated Arabidopsis growth and development. These results provide a basis for dissecting specific molecular components involved in auxin-regulated developmental processes and offer new opportunities to discover novel molecular players involved in the auxin response.


Science ◽  
2018 ◽  
Vol 362 (6421) ◽  
pp. 1407-1410 ◽  
Author(s):  
Beatriz Orosa-Puente ◽  
Nicola Leftley ◽  
Daniel von Wangenheim ◽  
Jason Banda ◽  
Anjil K. Srivastava ◽  
...  

Plants adapt to heterogeneous soil conditions by altering their root architecture. For example, roots branch when in contact with water by using the hydropatterning response. We report that hydropatterning is dependent on auxin response factor ARF7. This transcription factor induces asymmetric expression of its target gene LBD16 in lateral root founder cells. This differential expression pattern is regulated by posttranslational modification of ARF7 with the small ubiquitin-like modifier (SUMO) protein. SUMOylation negatively regulates ARF7 DNA binding activity. ARF7 SUMOylation is required to recruit the Aux/IAA (indole-3-acetic acid) repressor protein IAA3. Blocking ARF7 SUMOylation disrupts IAA3 recruitment and hydropatterning. We conclude that SUMO-dependent regulation of auxin response controls root branching pattern in response to water availability.


2018 ◽  
Author(s):  
Mouli Ghosh Dastidar ◽  
Andrea Scarpa ◽  
Ira Mägele ◽  
Paola Ruiz-Duarte ◽  
Patrick von Born ◽  
...  

SUMMARYThe root meristem is organized around a quiescent centre surrounded by stem cells that generate all cell types of the root. In the transit amplifying compartment progeny of stem cells further divide prior to differentiation. Auxin controls the size of this transit-amplifying compartment via Auxin Response Factors (ARF) that interact with Auxin Response Elements (AuxRE) in the promoter of their targets. The microRNA miR390 regulates abundance of ARF2, ARF3 and ARF4 by triggering the production of trans-acting (ta)-siRNA from TAS3. This miR390/TAS3/ARF regulatory module confers sensitivity and robustness to auxin responses in diverse developmental contexts. Here, we show that miR390 is expressed in the transit-amplifying compartment of the root meristem where it modulates response to auxin. A single AuxRE bound by ARF5/MONOPTEROS (MP) in miR390 promoter is necessary for miR390 expression in this compartment. We show that interfering with ARF5/MP dependent auxin signaling attenuates miR390 expression in the transit-amplifying compartment. Our results show that ARF5/MP regulates directly the expression of miR390 in the basal root meristem. We propose that ARF5, miR390 and the ta-siRNAs-regulated ARFs are necessary to maintain the size of the transit-amplifying region of the meristem.One sentence summaryThe expression of miR390 in the Arabidopsis basal root meristem is controlled by ARF5/MONOPTEROS.


Sign in / Sign up

Export Citation Format

Share Document