Garden-waste-vermicompost leachate alleviates salinity stress in tomato seedlings by mobilizing salt tolerance mechanisms

2013 ◽  
Vol 71 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Mayashree Chinsamy ◽  
Manoj G. Kulkarni ◽  
Johannes Van Staden
2020 ◽  
Vol 1 (3) ◽  
pp. 100031 ◽  
Author(s):  
William Wing Ho Ho ◽  
Camilla B. Hill ◽  
Monika S. Doblin ◽  
Megan C. Shelden ◽  
Allison van de Meene ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Rongrong Tao ◽  
Jinfeng Ding ◽  
Chunyan Li ◽  
Xinkai Zhu ◽  
Wenshan Guo ◽  
...  

Soil salinity is a worldwide issue that affects wheat production. A comprehensive understanding of salt-tolerance mechanisms and the selection of reliable screening indices are crucial for breeding salt-tolerant wheat cultivars. In this study, 30 wheat genotypes (obtained from a rapid selection of 96 original varieties) were chosen to investigate the existing screening methods and clarify the salinity tolerance mechanisms in wheat. Ten-day-old seedlings were treated with 150 mM NaCl. Eighteen agronomic and physiological parameters were measured. The results indicated that the effects of salinity on the agronomic and physiological traits were significant. Salinity stress significantly decreased K+ content and K+/Na+ ratio in the whole plant, while the leaf K+/Na+ ratio was the strongest determinant of salinity tolerance and had a significantly positive correlation with salt tolerance. In contrast, salinity stress significantly increased Na+ concentration and relative gene expression (TaHKT1;5, TaSOS1, and TaAKT1-like). The Na+ transporter gene (TaHKT1;5) showed a significantly greater increase in expression than the K+ transporter gene (TaAKT1-like). We concluded that Na+ exclusion rather than K+ retention contributed to an optimal leaf K+/Na+ ratio. Furthermore, the present exploration revealed that, under salt stress, tolerant accessions had higher shoot water content, shoot dry weight and lower stomatal density, leaf sap osmolality, and a significantly negative correlation was observed between salt tolerance and stomatal density. This indicated that changes in stomata density may represent a fundamental mechanism by which a plant may optimize water productivity and maintain growth under saline conditions. Taken together, the leaf K+/Na+ ratio and stomatal density can be used as reliable screening indices for salt tolerance in wheat at the seedling stage.


1999 ◽  
Vol 37 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ana Santa-Cruz ◽  
Manuel Acosta ◽  
Ana Rus ◽  
Maria C. Bolarin

Author(s):  
Chunlei Wang ◽  
Lijuan Wei ◽  
Jing Zhang ◽  
Dongliang Hu ◽  
Rong Gao ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254189
Author(s):  
Nazanin Amirbakhtiar ◽  
Ahmad Ismaili ◽  
Mohammad-Reza Ghaffari ◽  
Raheleh Mirdar Mansuri ◽  
Sepideh Sanjari ◽  
...  

Salinity is one of the main abiotic stresses limiting crop productivity. In the current study, the transcriptome of wheat leaves in an Iranian salt-tolerant cultivar (Arg) was investigated in response to salinity stress to identify salinity stress-responsive genes and mechanisms. More than 114 million reads were generated from leaf tissues by the Illumina HiSeq 2500 platform. An amount of 81.9% to 85.7% of reads could be mapped to the wheat reference genome for different samples. The data analysis led to the identification of 98819 genes, including 26700 novel transcripts. A total of 4290 differentially expressed genes (DEGs) were recognized, comprising 2346 up-regulated genes and 1944 down-regulated genes. Clustering of the DEGs utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that transcripts associated with phenylpropanoid biosynthesis, transporters, transcription factors, hormone signal transduction, glycosyltransferases, exosome, and MAPK signaling might be involved in salt tolerance. The expression patterns of nine DEGs were investigated by quantitative real-time PCR in Arg and Moghan3 as the salt-tolerant and susceptible cultivars, respectively. The obtained results were consistent with changes in transcript abundance found by RNA-sequencing in the tolerant cultivar. The results presented here could be utilized for salt tolerance enhancement in wheat through genetic engineering or molecular breeding.


2018 ◽  
Author(s):  
Reza Shokri-Gharelo ◽  
Pouya Motie-Noparvar

Canola (Brassica napus L.) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as ‘salt-tolerant’, plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests where researchers should focus future studies.


2018 ◽  
Vol 69 (7) ◽  
pp. 649 ◽  
Author(s):  
Jafar Ahmadi ◽  
Alireza Pour-Aboughadareh ◽  
Sedigheh Fabriki-Ourang ◽  
Ali-Ashraf Mehrabi ◽  
Kadambot H. M. Siddique

Wild relatives of wheat have served as a pool of genetic variation for understanding salinity tolerance mechanisms. Two separate experiments were performed to evaluate the natural diversity in root and shoot Na+ exclusion and K+ accumulation, and the activity of four antioxidant enzymes within an extensive collection of ancestral wheat accessions. In the initial screening experiment, salinity stress (300 mm NaCl) significantly increased Na+ concentration in roots and leaves and led to a significant decline in root and shoot fresh weights, dry weights, and K+ contents. Principal component analysis of the 181 accessions and 12 species identified three first components accounted for 63.47% and 78.55% of the variation under salinity stress. We identified 12 accessions of each species with superior tolerance to salinity for further assessment of their antioxidant defence systems in response to salinity. Both mild (250 mm NaCl) and severe (350 mm NaCl) levels of salinity significantly increased activities of four enzymes, indicating an enhanced antioxidant-scavenging system for minimising the damaging effects of H2O2. Some of the wild relatives—Aegilops speltoides (putative B genome), Ae. caudata (C genome), Ae. cylindrica (DC genome) and Triticum boeoticum (Ab genome)—responded to salinity stress by increasing antioxidants as the dominant mechanism to retain oxidative balance in cells. Further evaluation of salt-tolerance mechanisms in these superior wild relatives will help us to understand the potential of wheat progenitors in the development of more salt-tolerant varieties.


Author(s):  
Nadia Bazihizina ◽  
Federico Vita ◽  
Raffaella Balestrini ◽  
Claudia Kiferle ◽  
Stefania Caparrotta ◽  
...  

Abstract Significant variation in epidermal bladder cell (EBC) density and salt tolerance (ST) exists amongst quinoa accessions, suggesting that salt sequestration in EBCs is not the only mechanism conferring ST in this halophyte. In order to reveal other traits that may operate in tandem with salt sequestration in EBCs and whether these additional tolerance mechanisms acted mainly at the root or shoot level, two quinoa (Chenopodium quinoa) accessions with contrasting ST and EBC densities (Q30, low ST with high EBC density versus Q68, with high ST and low EBC density) were studied. The results indicate that responses in roots, rather than in shoots, contributed to the greater ST in the accession with low EBC density. In particular, the tolerant accession had improved root plasma membrane integrity and K+ retention in the mature root zone in response to salt. Furthermore, superior ST in the tolerant Q68 was associated with faster and root-specific H2O2 accumulation and reactive oxygen species-induced K+ and Ca2+ fluxes in the root apex within 30 min after NaCl application. This was found to be associated with the constitutive up-regulation of the membrane-localized receptor kinases regulatory protein FERONIA in the tolerant accession. Taken together, this study shows that differential root signalling events upon salt exposure are essential for the halophytic quinoa; the failure to do this limits quinoa adaptation to salinity, independently of salt sequestration in EBCs.


1998 ◽  
Vol 4 (S2) ◽  
pp. 1174-1175
Author(s):  
A.D. Barnabas ◽  
R. Jagels ◽  
W.J. Przybylowicz ◽  
J. Mesjasz-Przybylowicz

Ruppia maritima L. is a submerged halophyte which occurs frequently in estuaries where sodium chloride is the dominant salt. Unlike terrestrial halophytes, R. maritima does not possess any specialised salt-secreting structures such as salt glands. Knowledge of salt tolerance mechanisms in this plant is important to our understanding of its biology. In a previous study it was shown that leaf epidermal cells of R. maritima, which possess transfer cell characteristics, are implicated in salt regulation. In the present investigation, the effect of calcium (Ca) on salt tolerance of leaf epidermal cells was studied since Ca has been found to be an important factor in resistance to salt stress in terrestrial plants.Plants were grown in artificial seawater of high salinity (33%) and at two different Ca concentrations : 400 ppm (high Ca) and 100 ppm (low Ca).


Sign in / Sign up

Export Citation Format

Share Document