scholarly journals Mechanism of protection from insulin resistance by toll-like receptor 2 deficiency in high-fat diet fed mice: involvement in macrophage polarization

Author(s):  
Yu Ma ◽  
Xinyue Liu ◽  
Yaliu Wu ◽  
Wendong Wang ◽  
Xiaotong Chang
Author(s):  
Longmin Chen ◽  
Jing Zhang ◽  
Yuan Zou ◽  
Faxi Wang ◽  
Jingyi Li ◽  
...  

AbstractKdm2a catalyzes H3K36me2 demethylation to play an intriguing epigenetic regulatory role in cell proliferation, differentiation, and apoptosis. Herein we found that myeloid-specific knockout of Kdm2a (LysM-Cre-Kdm2af/f, Kdm2a−/−) promoted macrophage M2 program by reprograming metabolic homeostasis through enhancing fatty acid uptake and lipolysis. Kdm2a−/− increased H3K36me2 levels at the Pparg locus along with augmented chromatin accessibility and Stat6 recruitment, which rendered macrophages with preferential M2 polarization. Therefore, the Kdm2a−/− mice were highly protected from high-fat diet (HFD)-induced obesity, insulin resistance, and hepatic steatosis, and featured by the reduced accumulation of adipose tissue macrophages and repressed chronic inflammation following HFD challenge. Particularly, Kdm2a−/− macrophages provided a microenvironment in favor of thermogenesis. Upon HFD or cold challenge, the Kdm2a−/− mice manifested higher capacity for inducing adipose browning and beiging to promote energy expenditure. Collectively, our findings demonstrate the importance of Kdm2a-mediated H3K36 demethylation in orchestrating macrophage polarization, providing novel insight that targeting Kdm2a in macrophages could be a viable therapeutic approach against obesity and insulin resistance.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ellen Jackson ◽  
Elizabeth Rendina-Ruedy ◽  
Matt Priest ◽  
Brenda Smith ◽  
Veronique Lacombe

Diabetes mellitus is an epidemic disease characterized by alterations in glucose transport, which is tightly regulated by a family of specialized proteins called the glucose transporters (GLUTs). Although diabetic cardiomyopathy is a common complication in diabetic patients, its pathogenesis is still not well understood. Toll-like receptor (TLR) 4, which plays a central role in pathogen recognition by the innate immune system, may also play a critical role in linking inflammation and metabolic disease. We hypothesized that TLR4 activation triggers cardiac insulin resistance. We used mice with a loss-of function mutation in TLR4 (C3H/HeJ) and age-matched wild-type (WT, C57BL/6N) mice (n=8/group) to investigate how feeding a high-fat diet (HFD, 60% kcal from fat) for 16 weeks affected whole-body and cardiac glucose metabolism. After 16 weeks, WT mice fed a HFD were obese and developed hyperglycemia and insulin resistance compared to WT mice on a control diet (10% kcal from fat). The C3H/HeJ mice were partially protected against HFD-induced obesity and insulin resistance. In the heart, WT mice fed a HFD had a 30% decrease (P<0.05) in GLUT4 protein content as measured by Western Blot of cardiac crude membrane protein extracts. In contrast, the loss-of-function point mutation in TLR4 partially rescued cardiac GLUT4 content in the face of a HFD. Interestingly, there was a 40% increase (P<0.05) in the novel GLUT isoform, GLUT8, in the heart when mice of either genotype were fed a HFD. Additionally, GLUT4 protein content was negatively (P<0.05) correlated with GLUT8 content in the myocardium, suggesting that GLUT8 may act as a compensatory mechanism in the face of HFD-induced GLUT4 downregulation. Phosphorylated Akt, a key protein of the insulin signaling pathway, was positively (P<0.05) correlated with GLUT4 content, while the basal/inactive form was negatively correlated. In conclusion, these data suggest that activation of TLR4 activation during diabetes and obesity alters glucose transport by an Akt mechanism, and as such is a pathogenic factor during peripheral and cardiac insulin resistance. Overall, TLR4 appears to be a key modulator in the cross-talk between inflammatory and metabolic pathways, as well as a potential therapeutic target for diabetes.


2014 ◽  
Vol 34 (12) ◽  
pp. 1045-1051 ◽  
Author(s):  
Zhongxiao Wan ◽  
Cody Durrer ◽  
Dorrian Mah ◽  
Svetlana Simtchouk ◽  
Jonathan P. Little

PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sung A. Jung ◽  
Miseon Choi ◽  
Sohee Kim ◽  
Rina Yu ◽  
Taesun Park

Cinchonine (C19H22N2O) is a natural compound of Cinchona bark. Although cinchonine's antiplatelet effect has been reported in the previous study, antiobesity effect of cinchonine has never been studied. The main objective of this study was to investigate whether cinchonine reduces high-fat-diet- (HFD-) induced adipogenesis and inflammation in the epididymal fat tissues of mice and to explore the underlying mechanisms involved in these reductions. HFD-fed mice treated with 0.05% dietary cinchonine for 10 weeks had reduced body weight gain (−38%), visceral fat-pad weights (−26%), and plasma levels of triglyceride, free fatty acids, total cholesterol, and glucose compared with mice fed with the HFD. Moreover, cinchonine significantly reversed HFD-induced downregulations of WNT10b and galanin-mediated signaling molecules and key adipogenic genes in the epididymal adipose tissues of mice. Cinchonine also attenuated the HFD-induced upregulation of proinflammatory cytokines by inhibiting toll-like-receptor-2- (TLR2-) and TLR4-mediated signaling cascades in the adipose tissue of mice. Our findings suggest that dietary cinchonine with its effects on adipogenesis and inflammation may have a potential benefit in preventing obesity.


Diabetes ◽  
2017 ◽  
Vol 66 (10) ◽  
pp. 2659-2668 ◽  
Author(s):  
Youngyi Lee ◽  
Sun-O Ka ◽  
Hye-Na Cha ◽  
Yu-Na Chae ◽  
Mi-Kyung Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document