In vitro mutagenesis of Chrysanthemum morifolium cultivars using ethylmethanesulphonate (EMS) and mutation assessment by ISSR and IRAP markers

Author(s):  
Fardin Nasri ◽  
Hedayat Zakizadeh ◽  
Yavar Vafaee ◽  
Ali Akbar Mozafari
Plant Biology ◽  
2006 ◽  
Vol 8 (4) ◽  
pp. 450-461 ◽  
Author(s):  
Z. Hossain ◽  
A. K. A. Mandal ◽  
S. K. Datta ◽  
A. K. Biswas

2006 ◽  
Vol 33 (1) ◽  
pp. 91 ◽  
Author(s):  
Zahed Hossain ◽  
Abul Kalam Azad Mandal ◽  
Subodh Kumar Datta ◽  
Amal K. Biswas

A stable NaCl-tolerant mutant (R1) of Chrysanthemum morifolium Ramat has been developed by in vitro mutagenesis with gamma radiation (5 gray; Gy). Salt tolerance was evaluated by the capacity of the plant to maintain both flower quality and yield under NaCl stress. Enhanced salt tolerance of the R1 mutant was attributed to increased activities of reactive oxygen species (ROS)-scavenging enzymes, namely superoxide dismutase (SOD), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR), and to reduced membrane damage, higher relative water content (RWC), chlorophyll and carotenoids contents. RAPD analysis revealed two polymorphic bands (956 and 1093 bp) for the R1 mutant that might be considered as specific RAPD markers associated with salt tolerance. Better performance of the R1 progeny under identical salinity stress conditions, even in the second year, confirmed the genetic stability of the induced salt tolerance character. The R1 mutant developed by gamma ray treatment can be considered a salt-tolerant mutant showing all the positive characteristics of tolerance to NaCl stress.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1111
Author(s):  
Natalia Miler ◽  
Iwona Jedrzejczyk ◽  
Seweryn Jakubowski ◽  
Janusz Winiecki

Classical mutation breeding using physical factors is a common breeding method for ornamental crops. The aim of our study was to examine the utility of ovaries excised from irradiated inflorescences of Chrysanthemum × morifolium (Ramat.) as explants for breeding purposes. We studied the in vitro regeneration capacity of the ovaries of two chrysanthemum cultivars: ‘Profesor Jerzy’ and ‘Karolina’ preceded by irradiation with high-energy photons (total dose 5, 10 and 15 Gy) and high-energy electrons (total dose 10 Gy). Growth and inflorescence parameters of greenhouse acclimatized regenerants were recorded, and ploidy level was estimated with flow cytometry. The strong impact of genotype on regeneration efficiency was recorded—cultivar ‘Karolina’ produced only 7 viable shoots, while ‘Profesor Jerzy’ produced totally 428 shoots. With an increase of irradiation dose, the regeneration decreased, the least responsive were explants irradiated with 15 Gy high-energy photons and 10 Gy high-energy electrons. Regenerants of ‘Profesor Jerzy’ obtained from these explants possessed shorter stem and flowered later. The highest number of stable, color and shape inflorescence variations were obtained from explants treated with 10 Gy high-energy photons. Variations of inflorescences were predominantly changes of shape—from full to semi-full. New color phenotypes were dark yellow, light yellow and pinkish, among them only the dark yellow phenotype remained stable during second year cultivation. None of the regenerants were haploid. The application of ovaries irradiated within the whole inflorescence of chrysanthemum can be successfully applied in the breeding programs, provided the mother cultivar regenerate in vitro efficiently.


Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1261-1272 ◽  
Author(s):  
Laura Salem ◽  
Natalie Walter ◽  
Robert Malone

Abstract REC104 is a gene required for the initiation of meiotic recombination in Saccharomyces cerevisiae. To better understand the role of REC104 in meiosis, we used an in vitro mutagenesis technique to create a set of temperature-conditional mutations in REC104 and used one ts allele (rec104-8) in a screen for highcopy suppressors. An increased dosage of the early exchange gene REC102 was found to suppress the conditional recombinational reduction in rec104-8 as well as in several other conditional rec104 alleles. However, no suppression was observed for a null allele of REC104, indicating that the suppression by REC102 is not “bypass” suppression. Overexpression of the early meiotic genes REC114, RAD50, HOP1, and RED1 fails to suppress any of the rec104 conditional alleles, indicating that the suppression might be specific to REC102.


1982 ◽  
Vol 2 (4) ◽  
pp. 412-425 ◽  
Author(s):  
S I Reed ◽  
J Ferguson ◽  
J C Groppe

The CDC28 gene was subcloned from a plasmid containing a 6.5-kilobase-pair segment of Saccharomyces cerevisiae DNA YRp7(CDC28-3) by partial digestion with Sau3A and insertion of the resulting fragments into the BamHI sites of YRp7 and pRC1. Recombinant plasmids were obtained containing inserts of 4.4 and 3.1 kilobase pairs which were capable of complementing a cdc28(ts) mutation. R-loop analysis indicated that each yeast insert contained two RNA coding regions of about 0.8 and 1.0 kilobase pairs, respectively. In vitro mutagenesis experiments suggested that the smaller coding region corresponded to the CDC28 gene. When cellular polyadenylic acid-containing RNA, separated by agarose gel electrophoresis after denaturation with glyoxal and transferred to nitrocellulose membrane, was reacted with labeled DNA from the smaller coding region, and RNA species of about 1 kilobase in length was detected. Presumably, the discrepancy in size between the R-loop and electrophoretic determinations is due to a segment of polyadenylic acid which is excluded from the R-loops. By using hybridization of the histone H2B mRNAs to an appropriate probe as a previously determined standards, it was possible to estimate the number of CDC28 mRNA copies per haploid cell as between 6 and 12 molecules. Hybrid release translation performed on the CDC29 mRNA directed the synthesis of a polypeptide of 27,000 daltons, as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. This polypeptide was not synthesized when mRNA prepared from a cdc28 nonsense mutant was translated in a parallel fashion. However, if the RNA from a cell containing the CDC28 gene on a plasmid maintained at a high copy number was translated, the amount of in vitro product was amplified fivefold.


2005 ◽  
Vol 80 (2) ◽  
pp. 201-207 ◽  
Author(s):  
N. Rama Swamy ◽  
T. Ugandhar ◽  
M. Praveen ◽  
M. Rambabu ◽  
M. Upender

Peptides ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 220-229 ◽  
Author(s):  
S. Vijayan ◽  
J. Imani ◽  
K. Tanneeru ◽  
L. Guruprasad ◽  
K.H. Kogel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document