Predictive Analysis of Machine Learning Error Classification Based on Bayesian Network

Author(s):  
Zhang Liwei
2019 ◽  
Vol 11 (22) ◽  
pp. 6416 ◽  
Author(s):  
Ouyang ◽  
Wang ◽  
Zhu

Coordinating ecosystem service supply and demand equilibrium and utilizing machine learning to dynamically construct an ecological security pattern (ESP) can help better understand the impact of urban development on ecological processes, which can be used as a theoretical reference in coupling economic growth and environmental protection. Here, the ESP of the Changsha–Zhuzhou–Xiangtan urban agglomeration was constructed, which made use of the Bayesian network model to dynamically identify the ecological sources. The ecological corridor and ecological strategy points were identified using the minimum cumulative resistance model and circuit theory. The ESP was constructed by combining seven ecological sources, “two horizontal and three vertical” ecological corridors, and 37 ecological strategy points. Our results found spatial decoupling between the supply and demand of ecosystem services (ES) and the degradation in areas with high demand for ES. The ecological sources and ecological corridors of the urban agglomeration were mainly situated in forestlands and water areas. The terrestrial ecological corridor was distributed along the outer periphery of the urban agglomeration, while the aquatic ecological corridor ran from north to south throughout the entire region. The ecological strategic points were mainly concentrated along the boundaries of the built-up area and the intersection between construction land and ecological land. Finally, the ecological sources were found primarily on existing ecological protection zones, which supports the usefulness of machine learning in predicting ecological sources and may provide new insights in developing urban ESP.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yanyang Bai ◽  
Xuesheng Zhang

With the technological development and change of the times in the current era, with the rapid development of science and technology and information technology, there is a gradual replacement in the traditional way of cognition. Effective data analysis is of great help to all societies, thereby drive the development of better interests. How to expand the development of the overall information resources in the process of utilization, establish a mathematical analysis–oriented evidence theory system model, improve the effective utilization of the machine, and achieve the goal of comprehensively predicting the target behavior? The main goal of this article is to use machine learning technology; this article defines the main prediction model by python programming language, analyzes and forecasts the data of previous World Cup, and establishes the analysis and prediction model of football field by K-mean and DPC clustering algorithm. Python programming is used to implement the algorithm. The data of the previous World Cup football matches are selected, and the built model is used for the predictive analysis on the Python platform; the calculation method based on the DPC-K-means algorithm is used to determine the accuracy and probability of the variables through the calculation results, which develops results in specific competitions. Research shows how the machine wins and learns the efficiency of the production process, and the machine learning process, the reliability, and accuracy of the prediction results are improved by more than 55%, which proves that mobile algorithm technology has a high level of predictive analysis on the World Cup football stadium.


Author(s):  
Ayush Jaiswal ◽  
Adesh Kumar Pandey ◽  
Piyush ◽  
Rajeev Ranjan Kumar ◽  
Sajal Omar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document