scholarly journals Saikokeishikankyoto extract alleviates muscle atrophy in KKAy mice

Author(s):  
Yanglan Ou ◽  
Kohei Jobu ◽  
Tomoaki Ishida ◽  
Shumpei Morisawa ◽  
Hiroko Fujita ◽  
...  

AbstractSarcopenic obesity is associated with increased visceral fat and decreased muscle mass, resulting in decreased insulin sensitivity, increased production of inflammatory cytokines, and oxidative stress. In this study, we first evaluated the effects of herbal medicines on the transcriptional activity of the Sirtuin 1 (sirt1) promoter in vitro as an indicator of their therapeutic effect. Our data suggested that hot water Saikokeishikankyoto (SKK) extracts increased sirt1 transcriptional activity in vitro, identifying it as a candidate therapeutic for evaluation in the KKAy type 2 diabetic obesity mouse model. These in vivo evaluations revealed that SKK treatment increased the wet weight and muscle fiber content in cross sections of the gastrocnemius muscle (GA) and restored motor function in these animals. In addition, SKK treatment reduced tumor necrosis factor-α (TNFα) expression in the sera and suppressed Atrogin1 and MuRF1 transcription in the GA samples. This treatment also increased sirt1 expression in these tissues. These results suggest that SKK inhibits skeletal muscle atrophy and improves motor function in KKAy mice by suppressing inflammation. In actual clinical practice, SKK is expected to inhibit muscle atrophy and improve motor dysfunction in sarcopenic obesity. Graphical abstract

Author(s):  
Kathryn W. Aguilar-Agon ◽  
Andrew J. Capel ◽  
Jacob W. Fleming ◽  
Darren J. Player ◽  
Neil R. W. Martin ◽  
...  

Abstract Skeletal muscle atrophy as a consequence of acute and chronic illness, immobilisation, muscular dystrophies and aging, leads to severe muscle weakness, inactivity and increased mortality. Mechanical loading is thought to be the primary driver for skeletal muscle hypertrophy, however the extent to which mechanical loading can offset muscle catabolism has not been thoroughly explored. In vitro 3D-models of skeletal muscle provide a controllable, high throughput environment and mitigating many of the ethical and methodological constraints present during in vivo experimentation. This work aimed to determine if mechanical loading would offset dexamethasone (DEX) induced skeletal muscle atrophy, in muscle engineered using the C2C12 murine cell line. Mechanical loading successfully offset myotube atrophy and functional degeneration associated with DEX regardless of whether the loading occurred before or after 24 h of DEX treatment. Furthermore, mechanical load prevented increases in MuRF-1 and MAFbx mRNA expression, critical regulators of muscle atrophy. Overall, we demonstrate the application of tissue engineered muscle to study skeletal muscle health and disease, offering great potential for future use to better understand treatment modalities for skeletal muscle atrophy.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2274
Author(s):  
Roi Cal ◽  
Heidi Davis ◽  
Alish Kerr ◽  
Audrey Wall ◽  
Brendan Molloy ◽  
...  

Skeletal muscle is the metabolic powerhouse of the body, however, dysregulation of the mechanisms involved in skeletal muscle mass maintenance can have devastating effects leading to many metabolic and physiological diseases. The lack of effective solutions makes finding a validated nutritional intervention an urgent unmet medical need. In vitro testing in murine skeletal muscle cells and human macrophages was carried out to determine the effect of a hydrolysate derived from vicia faba (PeptiStrong: NPN_1) against phosphorylated S6, atrophy gene expression, and tumour necrosis factor alpha (TNF-α) secretion, respectively. Finally, the efficacy of NPN_1 on attenuating muscle waste in vivo was assessed in an atrophy murine model. Treatment of NPN_1 significantly increased the phosphorylation of S6, downregulated muscle atrophy related genes, and reduced lipopolysaccharide-induced TNF-α release in vitro. In a disuse atrophy murine model, following 18 days of NPN_1 treatment, mice exhibited a significant attenuation of muscle loss in the soleus muscle and increased the integrated expression of Type I and Type IIa fibres. At the RNA level, a significant upregulation of protein synthesis-related genes was observed in the soleus muscle following NPN_1 treatment. In vitro and preclinical results suggest that NPN_1 is an effective bioactive ingredient with great potential to prolong muscle health.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Li Wang ◽  
Xin-Feng Jiao ◽  
Cheng Wu ◽  
Xiao-Qing Li ◽  
Hui-Xian Sun ◽  
...  

AbstractSkeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can improve skeletal muscle performance both in humans and mice. We here showed that dexamethasone-induced atrophy, as evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression, and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLR family pyrin domain containing 3 (NLRP3), Caspase-1, and gasdermin-D (GSDMD). Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine treatment ameliorated dexamethasone-induced muscle pyroptosis and atrophy both in vivo and in vitro. Activation of NLRP3 using LPS and ATP not only increased the cleavage and activation of Caspase-1 and GSDMD, but also increased the expression levels of atrophy markers MuRF1 and Atrogin-1 in trimetazidine-treated C2C12 myotubes. Mechanically, dexamethasone inhibited the phosphorylation of PI3K/AKT/FoxO3a, which could be attenuated by trimetazidine. Conversely, co-treatment with a PI3K/AKT inhibitor, picropodophyllin, remarkably increased the expression of NLRP3 and reversed the protective effects of trimetazidine against dexamethasone-induced C2C12 myotube pyroptosis and atrophy. Taken together, our study suggests that NLRP3/GSDMD-mediated pyroptosis might be a novel mechanism for dexamethasone-induced skeletal muscle atrophy. Trimetazidine might be developed as a potential therapeutic agent for the treatment of dexamethasone-induced muscle atrophy.


2019 ◽  
Author(s):  
He Wang ◽  
Qian Yu ◽  
Zai-Li Zhang ◽  
Hong Ma ◽  
Xiao-Qian Li

Abstract Background: Neuron survival after ischemia-reperfusion (IR) injury is the primary determinant of motor function prognosis. MicroRNA (miR)-based gene therapy has gained attention. Our previous work explored the mechanisms by which miR-137-3p modulates neuronal apoptosis in both in vivo and in vitro IR models.Methods: IR-induced motor dysfunction and spinal calpain (CAPN) subtype expression and subcellular distribution were detected within 12 h post IR. Dysregulated miRs, including miR-137-3p, were identified by miR microarray analysis and confirmed by PCR. Luciferase assay confirmed that CAPN-2 is a corresponding target of miR-137-3p, and their modulation of motor function was evaluated by intrathecal infection with synthetic miRs. CAPN-2 activity was measured by the intracellular Ca2+ concentration and mean fluorescence intensity in vitro. Neuronal apoptosis was detected by flow cytometry and lactate dehydrogenase (LDH) release. The activities of p35, p25, Cdk5 and caspase-8 were evaluated by ELISA and Western blotting after transfection with specific inhibitors and miRs.Results: The IR-induced motor dysfunction time course was closely associated with CAPN-2 protein upregulation, which was mainly distributed in neurons. The miR-137-3p/CAPN-2 gene pair was confirmed by luciferase assay. miR-137-3p mimic significantly improved IR-induced motor dysfunction and decreased CAPN-2 expression, even in combination with recombinant rat calpain-2 (rr-CALP2) injection, whereas miR-137-3p inhibitor reversed these effects. Similar changes were observed in the intracellular Ca2+ concentration and CAPN-2 expression and activity when cells were exposed to OGD/R and transfected with synthetic miRs in vitro. Moreover, double fluorescence revealed that CAPN-2, p35, p25 and caspase-8 were all identically distributed in neurons. The decrease in CAPN-2 expression and activity was accompanied by the opposite changes in p35 activity and protein expression in cells transfected with miR-137-3p mimic, roscovitine (a Cdk5 inhibitor) or Z-IETD-FMK (a caspase-8 inhibitor). Correspondingly, more surviving neurons were observed with the abovementioned treatments, indicated by a decrease in apoptotic cell percentage, LDH release and p25, Cdk5, caspase-8 and caspase-3 protein expression.Conclusions: The miR-137-3p/CAPN-2 gene pair functions to modulate neuronal apoptosis during IR injury, possibly through CAPN-2 inhibition leading to p35 cleavage and inhibition of subsequent p25/Cdk5 and caspase-8 overactivation.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3731
Author(s):  
Suji Baek ◽  
Jisu Kim ◽  
Byung Seok Moon ◽  
Sun Mi Park ◽  
Da Eun Jung ◽  
...  

Sarcopenia- or cachexia-related muscle atrophy is due to imbalanced energy metabolism and oxidative stress-induced muscle dysfunction. Monoterpenes play biological and pharmacological reactive oxygen species (ROS) scavenging roles. Hence, we explored the effects of camphene, a bicyclic monoterpene, on skeletal muscle atrophy in vitro and in vivo. We treated L6 myoblast cells with camphene and then examined the ROS-related oxidative stress using Mito TrackerTM Red FM and anti-8-oxoguanine antibody staining. To investigate lipid metabolism, we performed real-time polymerase chain reactions, holotomographic microscopy, and respiratory gas analysis. Rat muscle atrophy in in vivo models was observed using 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography and immunocytochemistry. Camphene reversed the aberrant cell size and muscle morphology of L6 myoblasts under starvation and in in vivo models. Camphene also attenuated E3 ubiquitin ligase muscle RING-finger protein-1, mitochondrial fission, and 8-oxoguanine nuclear expression in starved myotubes and hydrogen peroxide (H2O2)-treated cells. Moreover, camphene significantly regulated lipid metabolism in H2O2-treated cells and in vivo models. These findings suggest that camphene may potentially affect skeletal muscle atrophy by regulating oxidative stress and lipid metabolism.


2010 ◽  
Vol 109 (5) ◽  
pp. 1515-1523 ◽  
Author(s):  
Robert D. Hyldahl ◽  
Kevin S. O'Fallon ◽  
Lawrence M. Schwartz ◽  
Priscilla M. Clarkson

Skeletal muscle atrophy is a significant health problem that results in decreased muscle size and function and has been associated with increases in oxidative stress. The molecular mechanisms that regulate muscle atrophy, however, are largely unknown. The metallothioneins (MT), a family of genes with antioxidant properties, have been found to be consistently upregulated during muscle atrophy, although their function during muscle atrophy is unknown. Therefore, we hypothesized that MT knockdown would result in greater oxidative stress and an enhanced atrophy response in C2C12 myotubes subjected to serum reduction (SR), a novel atrophy-inducing stimulus. Forty-eight hours before SR, myotubes were transfected with small interfering RNA (siRNA) sequences designed to decrease MT expression. Muscle atrophy and oxidative stress were then measured at baseline and for 72 h following SR. Muscle atrophy was quantified by immunocytochemistry and myotube diameter measurements. Oxidative stress was measured using the fluorescent probe 5-(and-6)-carboxy-2′,7′-dichlorodihydrofluorescein. SR resulted in a significant increase in oxidative stress and a decrease in myotube size and protein content. However, there were no differences observed in the extent of muscle atrophy or oxidant activity following MT knockdown. We therefore conclude that the novel SR model results in a strong atrophy response and an increase in oxidant activity in cultured myotubes and that knockdown of MT does not affect that response.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4887
Author(s):  
Takeshi Nikawa ◽  
Anayt Ulla ◽  
Iori Sakakibara

Skeletal muscle atrophy is the decrease in muscle mass and strength caused by reduced protein synthesis/accelerated protein degradation. Various conditions, such as denervation, disuse, aging, chronic diseases, heart disease, obstructive lung disease, diabetes, renal failure, AIDS, sepsis, cancer, and steroidal medications, can cause muscle atrophy. Mechanistically, inflammation, oxidative stress, and mitochondrial dysfunction are among the major contributors to muscle atrophy, by modulating signaling pathways that regulate muscle homeostasis. To prevent muscle catabolism and enhance muscle anabolism, several natural and synthetic compounds have been investigated. Recently, polyphenols (i.e., natural phytochemicals) have received extensive attention regarding their effect on muscle atrophy because of their potent antioxidant and anti-inflammatory properties. Numerous in vitro and in vivo studies have reported polyphenols as strongly effective bioactive molecules that attenuate muscle atrophy and enhance muscle health. This review describes polyphenols as promising bioactive molecules that impede muscle atrophy induced by various proatrophic factors. The effects of each class/subclass of polyphenolic compounds regarding protection against the muscle disorders induced by various pathological/physiological factors are summarized in tabular form and discussed. Although considerable variations in antiatrophic potencies and mechanisms were observed among structurally diverse polyphenolic compounds, they are vital factors to be considered in muscle atrophy prevention strategies.


Author(s):  
Li Wang ◽  
Ming-Qing He ◽  
Xi-Yu Shen ◽  
Kang-Zhen Zhang ◽  
Can Zhao ◽  
...  

Skeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can also improve skeletal muscle performance both in human and mice. We here showed that dexamethasone induced atrophy, evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression , and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLRP3, Caspase-1 and GSDMD. Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine administration ameliorated dexamethasone-induced muscle atrophy both in vivo and in vitro. Moreover, trimetazidine improved exercise tolerance, as evidenced by increased running distance and running time, as well as increased skeletal muscle mass in dexamethasone-treated mice. Mechanically, trimetazidine could reverse dexamethasone-induced activation of pyroptosis both in C2C12 myotubes and in mice. Taken together, our present study demonstrated that NLRP3/GSDMD pathway-mediated pyroptosis was involved in dexamethasone-induced skeletal muscle atrophy. Trimetazidine could partially alleviate dexamethasone-induced skeletal muscle atrophy, and increase the diameter of C2C12 myotubes via inhibiting pyroptosis. Thus, trimetazidine might be a potential therapeutic compound for the prevention of muscle atrophy in glucocorticoid-treated patients.


2021 ◽  
Author(s):  
Shiqiang Liu ◽  
Pengyu Fu ◽  
Kaiting Ning ◽  
Rui Wang ◽  
Baoqiang Yang ◽  
...  

Abstract Background: Exposure to high altitude environment leads to skeletal muscle atrophy. As a hormone secreted by skeletal muscles after exercise, irisin contributes to promoting muscle regeneration and ameliorating skeletal muscle atrophy, but its role in hypoxia-induced skeletal muscle atrophy is still unclear. Methods & Results: Our results showed that 4 w of hypoxia exposure significantly reduced body weight and gastrocnemius muscle mass of mice, as well as grip strength and the duration time of treadmill exercise. Hypoxia treatment increased HIF-1α expression and decreased both the circulation level of irisin and its precursor protein FNDC5 expression in skeletal muscle. In vitro, CoCl2-induced chemical hypoxia and 1% O2 ambient hypoxia both reduced FNDC5, along with the increase of HIF-1α. Moreover, the decline of area and diameter of myotubes caused by hypoxia were rescued by inhibiting HIF-1α via YC-1. and Conclusions: Collectively, our research indicated that FNDC5/irisin was negatively regulated by HIF-1α and could participate in the regulation of muscle atrophy caused by hypoxia.


Sign in / Sign up

Export Citation Format

Share Document