scholarly journals Experimental investigation of a rotor blade tip vortex pair

Author(s):  
Dominic Schröder ◽  
Jorge Aguilar-Cabello ◽  
Thomas Leweke ◽  
Ralf Hörnschemeyer ◽  
Eike Stumpf

AbstractThis paper presents the results of an experimental study of two closely spaced vortices generated by a rotating blade with a modified tip geometry. The experiments are carried out in two water channel facilities and involve a generic one-bladed rotor operating in a regime near hover. It is equipped with a parametric fin placed perpendicular to the pressure surface near the tip, which generates a co-rotating vortex pair having a helical geometry. Based on previous results obtained with a fixed wing, a series of small-scale experiments is first carried out, to validate the method of vortex pair generation also for a rotating blade, and to obtain a qualitative overview of its evolution going downstream. A more detailed quantitative study is then performed in a larger facility at three times the initial scale. By varying the fin parameters, it was possible to obtain a configuration in which the two vortices have almost the same circulation. In both experiments, the vortex pair is found to merge into a single helical wake vortex within one blade rotation. Particle image velocimetry measurements show that the resulting vortex has a significantly larger core radius than the single tip vortex from a blade without fin. This finding may have relevance in the context of blade–vortex interactions, where noise generation and fatigue from fluid–structure interactions depend strongly on the vortex core size.

2001 ◽  
Vol 123 (4) ◽  
pp. 755-761 ◽  
Author(s):  
Choon-Man Jang ◽  
Masato Furukawa ◽  
Masahiro Inoue

The unsteady nature of vortex structures has been investigated by a large eddy simulation (LES) in a propeller fan with a shroud covering only the rear region of its rotor tip. The simulation shows that the tip vortex plays a major role in the structure and unsteady behavior of the vortical flow in the propeller fan. The spiral-type breakdown of the tip vortex occurs near the midpitch, leading to significant changes in the nature of the tip vortex. The breakdown gives rise to large and cyclic movements of the tip vortex, so that the vortex impinges cyclically on the pressure surface of the adjacent blade. The movements of the tip vortex cause the leading edge separation vortex to oscillate in a cycle, but on a small scale. The movements of the vortex structures induce high-pressure fluctuations on the rotor blade and in the blade passage.


Author(s):  
Jeffery P. Bindon

The pressure distribution in the tip clearance region of a 2D turbine cascade was examined with reference to unknown factors which cause high heat transfer rates and burnout along the edge of the pressure surface of unshrouded cooled axial turbines. Using a special micro-tapping technique, the pressure along a very narrow strip of the blade edge was found to be 2.8 times lower than the cascade outlet pressure. This low pressure, coupled with a thin boundary layer due to the intense acceleration at gap entry, are believed to cause blade burnout. The flow phenomena causing the low pressure are of very small scale and do not appear to have been previously reported. The ultra low pressure is primarily caused by the sharp flow curvature demanded of the leakage flow at gap entry. The curvature is made more severe by the apparent attachement of the flow around the corner instead of immediately separating to increase the radius demanded of the flow. The low pressures are intensified by a depression in the suction corner and by the formation of a separation bubble in the clearance gap. The bubble creates a venturi action. The suction corner depression is due to the mainstream flow moving round the leakage and secondary vortices.


1994 ◽  
Author(s):  
Shimpei Mizuki ◽  
Hoshio Tsujita

Three-dimensional incompressible turbulent flow within a linear turbine cascade with tip clearance is analyzed numerically. The governing equations involving the standard k-ε model are solved in the physical component tensor form with a boundary-fitted coordinate system. In the analysis, the blade tip geometry is treated accurately in order to predict the flow through the tip clearance in detail when the blades have large thicknesses. Although the number of grids employed in the present study is not enough because of the limitation of computer storage memory, the computed results show good agreements with the experimental results. Moreover, the results clearly exhibit the locus of minimum pressure on the rear part of the pressure surface at the blade tip.


AIAA Journal ◽  
2004 ◽  
Vol 42 (3) ◽  
pp. 524-535 ◽  
Author(s):  
Yong Oun Han ◽  
J. Gordon Leishman

Author(s):  
Patrick H. Wagner ◽  
Jan Van herle ◽  
Lili Gu ◽  
Jürg Schiffmann

Abstract The blade tip clearance loss was studied experimentally and numerically for a micro radial fan with a tip diameter of 19.2mm. Its relative blade tip clearance, i.e., the clearance divided by the blade height of 1.82 mm, was adjusted with different shims. The fan characteristics were experimentally determined for an operation at the nominal rotational speed of 168 krpm with hot air (200 °C). The total-to-total pressure rise and efficiency increased from 49 mbar to 68 mbar and from 53% to 64%, respectively, by reducing the relative tip clearance from 7.7% to the design value of 2.2%. Single and full passage computational fluid dynamics simulations correlate well with these experimental findings. The widely-used Pfleiderer loss correlation with an empirical coefficient of 2.8 fits the numerical simulation and the experiments within +2 efficiency points. The high sensitivity to the tip clearance loss is a result of the design specific speed of 0.80, the highly-backward curved blades (17°), and possibly the low Reynolds number (1 × 105). The authors suggest three main measures to mitigate the blade tip clearance losses for small-scale fans: (1) utilization of high-precision surfaced-grooved gas-bearings to lower the blade tip clearance, (2) a mid-loaded blade design, and (3) an unloaded fan leading edge to reduce the blade tip clearance vortex in the fan passage.


Author(s):  
Kazuo Suzuki ◽  
Shigehiro Ohkoshi ◽  
Keisuke Ohno ◽  
Motoki Hirai ◽  
Hideaki Akibayashi ◽  
...  

Author(s):  
Alberto Serena ◽  
Lars E. Bakken

The tip leakage flow affects turbomachines performance generating losses and reducing the effective blading; in addition, unsteady phenomena arise, negatively influencing the machine stability. In this paper, an overview of the existing models is presented. Local measurements of the pressure pulsations, visual flow observations and high quality video recordings from a high speed camera are performed in a novel pump laboratory, which provides the desired visualization of the rotating channels, and allows to study the fluctuating and intermittent nature of this phenomenon, and detect any asymmetry among the channels. A detailed comparison of the vortex tip structure for various tip clearances and with a whole set of numerical simulations finally completes the analysis. The three main focus areas are: tip vortex location, structure and evolution, performance comparison between shrouded and open impeller, at different tip clearance sizes, and study of the rotating instabilities.


2020 ◽  
Vol 10 (11) ◽  
pp. 3675
Author(s):  
Zhibo Liu ◽  
Fajie Duan ◽  
Guangyue Niu ◽  
Ling Ma ◽  
Jiajia Jiang ◽  
...  

Rotating blade vibration measurements are very important for any turbomachinery research and development program. The blade tip timing (BTT) technique uses the time of arrival (ToA) of the blade tip passing the casing mounted probes to give the blade vibration. As a non-contact technique, BTT is necessary for rotating blade vibration measurements. The higher accuracy of amplitude and vibration frequency identification has been pursued since the development of BTT. An improved circumferential Fourier fit (ICFF) method is proposed. In this method, the ToA is not only dependent on the rotating speed and monitoring position, but also on blade vibration. Compared with the traditional circumferential Fourier fit (TCFF) method, this improvement is more consistent with reality. A 12-blade assembly simulator and experimental data were used to evaluate the ICFF performance. The simulated results showed that the ICFF performance is comparable to TCFF in terms of EO identification, except the lower PSR or more number probes that have a more negative effect on ICFF. Besides, the accuracy of amplitude identification is higher for ICFF than TCFF on all test conditions. Meanwhile, the higher accuracy of the reconstruction of ICFF was further verified in all measurement resonance analysis.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 261 ◽  
Author(s):  
Andres G. ◽  
Juan S. ◽  
Omar López ◽  
Laura Suárez C, ◽  
Jaime A. Escobar

Globalization has led to an increase in the use of small copters for different activities such as geo-referencing, agricultural fields monitoring, survillance, among others. This is the main reason why there is a strong interest in the performance of small-scale propellers used in unmanned aerial vehicles. The flow developed by rotors is complex and the estimation of its aerodynamic performance is not a trivial process. In addition, viscous effects, when the rotor operates at low Reynolds, affect its performance. In the present paper, two different computational methods, Computational Fluid Dynamics (CFD) and the Unsteady Vortex Lattice Method (UVLM) with a viscous correction, were used to study the performance of an isolated rotor of a quadcopter flying at hover. The Multi Reference Frame model and transition S S T κ - ω turbulence model were used in the CFD simulations. The tip vortex core growth was used to account for the viscous effects in the UVLM. The wake structure, pressure coefficient, thrust and torque predictions from both methods are compared. Thrust and torque results from simulations were validated by means of experimental results of a characterization of a single rotor. Finally, figure of merit of the rotor is evaluated showing that UVLM overestimates the efficiency of the rotor; meanwhile, CFD predictions are close to experimental values.


Sign in / Sign up

Export Citation Format

Share Document