scholarly journals Evidence of viral genome linked protein of banana bract mosaic virus interaction with translational eukaryotic initiation factor 4E of plantain cv. Nendran based on yeast two hybrid system study

VirusDisease ◽  
2021 ◽  
Author(s):  
Chelliah Anuradha ◽  
R. Selvarajan ◽  
T. Jebasingh ◽  
P. Sankara Naynar
1999 ◽  
Vol 73 (7) ◽  
pp. 5411-5421 ◽  
Author(s):  
Maria Piron ◽  
Thierry Delaunay ◽  
Jeanne Grosclaude ◽  
Didier Poncet

ABSTRACT The rotavirus nonstructural protein NSP3 is a sequence-specific RNA binding protein that binds the nonpolyadenylated 3′ end of the rotavirus mRNAs. NSP3 also interacts with the translation initiation factor eIF4GI and competes with the poly(A) binding protein. Deletion mutations and point mutations of NSP3 from group A rotavirus (NSP3A), expressed in Escherichia coli, indicate that the RNA binding domain lies between amino acids 4 and 149. Similar results were obtained with NSP3 from group C rotaviruses. Data also indicate that a dimer of NSP3A binds one molecule of RNA and that dimerization is necessary for strong RNA binding. The dimerization domain of NSP3 was mapped between amino acids 150 and 206 by using the yeast two-hybrid system. The eukaryotic initiation factor 4 GI subunit (eIF-4GI) binding domain of NSP3A has been mapped in the last 107 amino acids of its C terminus by using a pulldown assay and the yeast two-hybrid system. NSP3 is composed of two functional domains separated by a dimerization domain.


2013 ◽  
Vol 38 (9) ◽  
pp. 1583-1591
Author(s):  
Li-Yan XUE ◽  
Bing LUO ◽  
Li-Quan ZHU ◽  
Yong-Jun YANG ◽  
He-Cui ZHANG ◽  
...  

Genomics ◽  
2001 ◽  
Vol 76 (1-3) ◽  
pp. 81-88 ◽  
Author(s):  
Sarah H.D Wilson ◽  
Angela M Bailey ◽  
Craig R Nourse ◽  
Marie-Geneviève Mattei ◽  
Jennifer A Byrne

1994 ◽  
Vol 91 (20) ◽  
pp. 9238-9242 ◽  
Author(s):  
T. Sato ◽  
M. Hanada ◽  
S. Bodrug ◽  
S. Irie ◽  
N. Iwama ◽  
...  

Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 1087-1095 ◽  
Author(s):  
Allan R Lohe ◽  
David T Sullivan ◽  
Daniel L Hartl

Abstract We have studied the Mos1 transposase encoded by the transposable element mariner. This transposase is a member of the “D,D(35)E” superfamily of proteins exhibiting the motif D,D(34)D. It is not known whether this transposase, or other eukaryote transposases manifesting the D,D(35)E domain, functions in a multimeric form. Evidence for oligomerization was found in the negative complementation of Mos1 by an EMS-induced transposase mutation in the catalytic domain. The transposase produced by this mutation has a glycine-to-arginine replacement at position 292. The G292R mutation strongly interferes with the ability of wild-type transposase to catalyze excision of a target element. Negative complementation was also observed for two other EMS mutations, although the effect was weaker than observed with G292R. Results from the yeast two-hybrid system also imply that Mos1 subunits interact, suggesting the possibility of subunit oligomerization in the transposition reaction. Overproduction of Mos1 subunits through an hsp70 promoter also inhibits excision of the target element, possibly through autoregulatory feedback on transcription or through formation of inactive or less active oligomers. The effects of both negative complementation and overproduction may contribute to the regulation of mariner transposition.


1994 ◽  
Vol 14 (11) ◽  
pp. 7483-7491
Author(s):  
A Kikuchi ◽  
S D Demo ◽  
Z H Ye ◽  
Y W Chen ◽  
L T Williams

Using a yeast two-hybrid system, we identified a novel protein which interacts with ras p21. This protein shares 69% amino acid homology with ral guanine nucleotide dissociation stimulator (ralGDS), a GDP/GTP exchange protein for ral p24. We designated this protein RGL, for ralGDS-like. Using the yeast two-hybrid system, we found that an effector loop mutant of ras p21 was defective in interacting with the ras p21-interacting domain of RGL, suggesting that this domain binds to ras p21 through the effector loop of ras p21. Since ralGDS contained a region highly homologous with the ras p21-interacting domain of RGL, we examined whether ralGDS could interact with ras p21. In the yeast two-hybrid system, ralGDS failed to interact with an effector loop mutant of ras p21. In insect cells, ralGDS made a complex with v-ras p21 but not with a dominant negative mutant of ras p21. ralGDS interacted with the GTP-bound form of ras p21 but not with the GDP-bound form in vitro. ralGDS inhibited both the GTPase-activating activity of the neurofibromatosis gene product (NF1) for ras p21 and the interaction of Raf with ras p21 in vitro. These results demonstrate that ralGDS specifically interacts with the active form of ras p21 and that ralGDS can compete with NF1 and Raf for binding to the effector loop of ras p21. Therefore, ralGDS family members may be effector proteins of ras p21 or may inhibit interactions between ras p21 and its effectors.


Sign in / Sign up

Export Citation Format

Share Document