Numerical study on the effects of creating rotationary flow inside the injector nozzle and changing fuel injection angle on the performance and emission of caterpillar diesel engine

Author(s):  
Amir Hamzeh Farajollahi ◽  
Reza Firuzi ◽  
Mohsen Rostami ◽  
Amir Mardani
2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


2017 ◽  
Vol 170 (3) ◽  
pp. 147-153
Author(s):  
Rafał SOCHACZEWSKI ◽  
Zbigniew CZYŻ ◽  
Ksenia SIADKOWSKA

This paper discusses the modeling of a fuel injector to be applied in a two-stroke diesel engine. A one-dimensional model of a diesel injector was modeled in the AVL Hydsim. The research assumption is that the combustion chamber will be supplied with one or two spray injectors with a defined number of nozzle holes. The diameter of the nozzle holes was calculated for the defined options to provide a correct fuel amount for idling and the maximum load. There was examined the fuel mass per injection and efficient flow area. The studies enabled us to optimize the injector nozzle, given the option of fuel injection into the combustion chamber to be followed.


2019 ◽  
Vol 8 (4) ◽  
pp. 4048-4052

Biodiesel, a derivative of vegetable oils and animal fats, is used nowadays as an alternative renewable and sustainable fossil fuel. In this work, the investigation of manufacture, characterization, and results of biodiesel blends are carried out using two important feedstock’s, sunflower oil and ricebran oil on engines. For the collective advantageous of sunflower oil and ricebran oil, the two biodiesels are combined together and the mixture is analysed to assess the engine performance and emission characteristics. NaOH catalyzed transesterification process is used for producing the Biodiesels A 4.4 kW, four-stroke, single-cylinder and direct fuel injection diesel engine is used for measuring physic-chemical with full load and varying speed conditions and using the specifications of ASTM D6751 standard, the properties are compared. It is observed that the Biodiesel mixtures produce a low brake torque and high brake-specific fuel consumption (BSFC) in addition to the reduction of CO and HC emissions. NOx, however, is reduced considerably with the improvement of brake thermal efficiency. The Performance analysis indicates that the mixture of sunflower oil and ricebran oil improves performance and emission characterizes over sunflower oil and ricebran oil biodiesel when they are unmixed..


2014 ◽  
Vol 592-594 ◽  
pp. 1632-1637
Author(s):  
Ramalingam Senthil ◽  
C. Paramasivam ◽  
Rajendran Silambarasan

Nerium methyl ester, an esterified biofuel, has an excellent cetane number and a reasonable calorific value. It closely resembles the behaviour of diesel. However, being a fuel of different origin, the standard design limits of a diesel engine is not suitable for Nerium methyl ester (NME). Therefore, in this work, a set of design and operational parameters are studied to find out the optimum performance of Nerium methyl ester run diesel engine. This work targets at finding the effects of the engine design parameter viz. fuel injection pressure (IP) on the performance with regard to specific fuel consumption (SFC), brake thermal efficiency (BTHE) and emissions of CO, CO2, HC, NOxwith N20 as fuel. Comparison of performance and emission was done for different values of injection pressure to find best possible condition for operating engine with NME. For small sized direct injection constant speed engines used for agricultural applications, the optimum injection pressure was found as 240bar.Methyl esters from Nerium, with properties close to diesel; show better performance and emission characteristics. Hence Nerium (N20) blend can be used in existing diesel engines without compromising the engine performance. Diesel (25%) thus saved will greatly help the interests of railways in meeting the demand for fuel,as diesel trains are operated at maximum load condition.


Author(s):  
Kang Pan ◽  
James S. Wallace

This paper presents a numerical study on fuel injection, ignition and combustion in a direct-injection natural gas (DING) engine with ignition assisted by a shielded glow plug (GP). The shield geometry is investigated by employing different sizes of elliptical shield opening and changing the position of the shield opening. The results simulated by KIVA-3V indicated that fuel ignition and combustion is very sensitive to the relative angle between the fuel injection and the shield opening, and the use of an elliptical opening for the glow plug shield can reduce ignition delay by 0.1∼0.2ms for several specific combinations of the injection angle and shield opening size, compared to a circular shield opening. In addition, the numerical results also revealed that the natural gas ignition and flame propagation will be delayed by lowering a circular shield opening from the fuel jet center plane, due to the blocking effect of the shield to the fuel mixture, and hence it will reduce the DING performance by causing a longer ignition delay.


2004 ◽  
Vol 126 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Renshan Liu ◽  
Chao Zhang

A numerical study of NOx reduction for a Direct Injection (DI) Diesel engine with complex geometry, which includes intake/exhaust ports and moving valves, was carried out using the commercial computational fluid dynamics software KIVA-3v. The numerical simulations were conducted to investigate the effects of engine operating and geometrical parameters, including fuel injection timing, fuel injection duration, and piston bowl depth, on the NOx formation and the thermal efficiency of the DI Diesel engine. The tradeoff relationships between the reduction in NOx and the decrease in thermal efficiency were established.


Author(s):  
D.K. Dond ◽  
N.P. Gulhane

Limited fossil fuel reservoir capacity and pollution caused by them is the big problem in front of researchers. In the present paper, an attempt was made to find a solution to the same. The conventional fuel injection system was retrofitted with a simple version of the common rail direct injection system for the small diesel engine. Further, the effect of injection system parameters was observed on the performance and emission characteristics of the retrofitted common rail direct injection diesel engine. The parameters such as injection pressure, the start of pilot injection timing, the start of main injection timing and quantity of percentage fuel injection during the pilot and main injection period were considered for experimental investigation. It was observed that all the evaluated parameters were found vital for improving the engine’s performance and emission characteristics. The retrofitted common rail direct injection system shows an average 7% rise in brake thermal efficiency with economic, specific fuel consumption. At the same time, much more reduction in hydrocarbon, carbon monoxide and smoke opacity with a penalty of a slight increase in nitrogen oxides.


Sign in / Sign up

Export Citation Format

Share Document