Identification of Candidate Gene Signatures and Regulatory Networks in Endometriosis and its Related Infertility by Integrated Analysis

Author(s):  
Qiutong Li ◽  
Min Xi ◽  
Fangrong Shen ◽  
Fengqing Fu ◽  
Juan Wang ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Maryam Heidari ◽  
Abbas Pakdel ◽  
Mohammad Reza Bakhtiarizadeh ◽  
Fariba Dehghanian

Johne’s disease is a chronic infection of ruminants that burdens dairy herds with a significant economic loss. The pathogenesis of the disease has not been revealed clearly due to its complex nature. In order to achieve deeper biological insights into molecular mechanisms involved in MAP infection resulting in Johne’s disease, a system biology approach was used. As far as is known, this is the first study that considers lncRNAs, TFs, and mRNAs, simultaneously, to construct an integrated gene regulatory network involved in MAP infection. Weighted gene coexpression network analysis (WGCNA) and functional enrichment analysis were conducted to explore coexpression modules from which nonpreserved modules had altered connectivity patterns. After identification of hub and hub-hub genes as well as TFs and lncRNAs in the nonpreserved modules, integrated networks of lncRNA-mRNA-TF were constructed, and cis and trans targets of lncRNAs were identified. Both cis and trans targets of lncRNAs were found in eight nonpreserved modules. Twenty-one of 47 nonpreserved modules showed significant biological processes related to the immune system and MAP infection. Some of the MAP infection’s related pathways in the most important nonpreserved modules comprise “positive regulation of cytokine-mediated signaling pathway,” “negative regulation of leukocyte migration,” “T-cell differentiation,” “neutrophil activation,” and “defense response.” Furthermore, several genes were identified in these modules, including SLC11A1, MAPK8IP1, HMGCR, IFNGR1, CMPK2, CORO1A, IRF1, LDLR, BOLA-DMB, and BOLA-DMA, which are potentially associated with MAP pathogenesis. This study not only enhanced our knowledge of molecular mechanisms behind MAP infection but also highlighted several promising hub and hub-hub genes involved in macrophage-pathogen interaction.


2009 ◽  
Vol 4 (6) ◽  
pp. 992-1005 ◽  
Author(s):  
Jan Baumbach ◽  
Tobias Wittkop ◽  
Christiane Katja Kleindt ◽  
Andreas Tauch

2020 ◽  
Author(s):  
Tao Jiang ◽  
Meide Zhang ◽  
Chunxiu Wen ◽  
Xiaoliang Xie ◽  
Wei Tian ◽  
...  

Abstract Background: The study objectives were to reveal the anthocyanin biosynthesis metabolic pathway in white and purple flowers of Salvia miltiorrhiza using metabolomics and transcriptomics, to identify different anthocyanin metabolites, and to analyze the differentially expressed genes involved in anthocyanin biosynthesis . Results: We analyzed the metabolomics and transcriptomics data of Salvia miltiorrhiza flowers. A total of 1994 differentially expressed genes and 84 flavonoid metabolites were identified between the white and purple flowers of Salvia miltiorrhiza . Integrated analysis of transcriptomic and metabolomics showed that cyanidin 3,5-O-diglucoside, malvidin 3,5-diglucoside, and cyanidin 3-O-galactoside were mainly responsible for the purple flower color of Salvia miltiorrhiza. A total of 100 unigenes encoding 10 enzymes were identified as candidate genes involved in anthocyanin biosynthesis in Salvia miltiorrhiza flowers. The low expression of the ANS gene decreased the anthocyanin content but enhanced the accumulation of flavonoids in Salvia miltiorrhiza flowers. Conclusions: Our results provide valuable information on the anthocyanin metabolites and the candidate genes involved in the anthocyanin biosynthesis pathways in Salvia miltiorrhiza .


2019 ◽  
Author(s):  
Xiao Ma ◽  
Shuangshuang Cen ◽  
Luming Wang ◽  
Chao Zhang ◽  
Limin Wu ◽  
...  

Abstract Abstract Background: Gonad is the major factor affecting the animal reproduction. The regulation mechanism of protein coding genes expression involved reproduction is still remains to be elucidated. Increasing evidence has shown that ncRNAs play key regulatory roles in gene expression in many life processes. The roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in reproduction had been investigated in some species. However, the regulation patterns of miRNA and lncRNA in sex biased expression of protein coding genes remains to be elucidated. In this study, we performed an integrated analysis of miRNA, messenger RNA (mRNA), and lncRNA expression profiles to explore their regulatory patterns in the female ovary and male testis of the soft-shelled turtle, Pelodiscus sinensis. Results: We identified 10 796 mature miRNAs, 44 678 mRNAs, and 58 923 lncRNAs in the testis and ovary. A total of 16 817 target genes were identified for miRNAs. Of these, 11 319 mRNAs, 10 495 lncRNAs, and 633 miRNAs were expressed differently. The predicted target genes of these differential expression (DE) miRNAs and lncRNAs included genes related to reproduction regulation. Furthermore, we found that 5 408 DElncRNAs and 186 DE miRNAs showed sex-specific expression. Of these, 3 miRNAs and 917 lncRNAs were testis specific and 186 DEmiRNAs and 4 491 DElncRNAs were ovary specific. We constructed compete endogenous lncRNA-miRNA-mRNA networks using bioinformatics, including 273 DEmRNAs, 5 730 DEmiRNAs, and 2 945 DElncRNAs. The target genes for the different expressed of miRNAs and lncRNAs included Wt1, Creb3l2, Gata4, Wnt2, Nr5a1, Hsd17, Igf2r, H2afz, Lin52, Trim71, Zar1, and Jazf1, etc. Conclusions: In animals, miRNA and lncRNA regulate the reproduction process, including the regulation of oocyte maturation and spermatogenesis. Considering their importance, the identified miRNAs, lncRNAs, and their targets in P. sinensis might be useful for genome editing to produce higher quality aquaculture animals. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of P. sinensis reproduction traits for aquaculture.


2020 ◽  
Vol 10 (10) ◽  
pp. 3675-3686 ◽  
Author(s):  
Sophie A. Harrington ◽  
Anna E. Backhaus ◽  
Ajit Singh ◽  
Keywan Hassani-Pak ◽  
Cristobal Uauy

Gene regulatory networks are powerful tools which facilitate hypothesis generation and candidate gene discovery. However, the extent to which the network predictions are biologically relevant is often unclear. Recently a GENIE3 network which predicted targets of wheat transcription factors was produced. Here we used an independent RNA-Seq dataset to test the predictions of the wheat GENIE3 network for the senescence-regulating transcription factor NAM-A1 (TraesCS6A02G108300). We re-analyzed the RNA-Seq data against the RefSeqv1.0 genome and identified a set of differentially expressed genes (DEGs) between the wild-type and nam-a1 mutant which recapitulated the known role of NAM-A1 in senescence and nutrient remobilisation. We found that the GENIE3-predicted target genes of NAM-A1 overlap significantly with the DEGs, more than would be expected by chance. Based on high levels of overlap between GENIE3-predicted target genes and the DEGs, we identified candidate senescence regulators. We then explored genome-wide trends in the network related to polyploidy and found that only homeologous transcription factors are likely to share predicted targets in common. However, homeologs which vary in expression levels across tissues are less likely to share predicted targets than those that do not, suggesting that they may be more likely to act in distinct pathways. This work demonstrates that the wheat GENIE3 network can provide biologically-relevant predictions of transcription factor targets, which can be used for candidate gene prediction and for global analyses of transcription factor function. The GENIE3 network has now been integrated into the KnetMiner web application, facilitating its use in future studies.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Chien-Yueh Lee ◽  
Amrita Chattopadhyay ◽  
Li-Mei Chiang ◽  
Jyh-Ming Jimmy Juang ◽  
Liang-Chuan Lai ◽  
...  

Abstract Integrated analysis of DNA variants and gene expression profiles may facilitate precise identification of gene regulatory networks involved in disease mechanisms. Despite the widespread availability of public resources, we lack databases that are capable of simultaneously providing gene expression profiles, variant annotations, functional prediction scores and pathogenic analyses. VariED is the first web-based querying system that integrates an annotation database and expression profiles for genetic variants. The database offers a user-friendly platform and locates gene/variant names in the literature by connecting to established online querying tools, biological annotation tools and records from free-text literature. VariED acts as a central hub for organized genome information consisting of gene annotation, variant allele frequency, functional prediction, clinical interpretation and gene expression profiles in three species: human, mouse and zebrafish. VariED also provides a novel scoring scheme to predict the functional impact of a DNA variant. With one single entry, all results regarding queried DNA variants can be downloaded. VariED can potentially serve as an efficient way to obtain comprehensive variant knowledge for clinicians and scientists around the world working on important drug discoveries and precision treatments.


Sign in / Sign up

Export Citation Format

Share Document