Combretodendron africanum bark extract as an antifertility agent. I: Estrogenic effects in vivo and lh release by cultured gonadotrope cells

1990 ◽  
Vol 29 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Tanon Benie ◽  
Asmahan el Izzi ◽  
Claudine Tahiri ◽  
Jacques Duval ◽  
Marie-Lise Thieulant
Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 681
Author(s):  
Gugulethu P. Khumalo ◽  
Nicholas J. Sadgrove ◽  
Sandy F. Van Vuuren ◽  
Ben-Erik Van Wyk

Indigenous trade of medicinal plants in South Africa is a multi-million-rand industry and is still highly relevant in terms of primary health care. The purpose of this study was to identify today’s most traded medicinal barks, traditionally and contemporaneously used for dermatological, gastrointestinal, and respiratory tract infections; then, to investigate the antimicrobial activity and toxicity of the respective extracts and interpret outcomes in light of pharmacokinetics. Thirty-one popularly traded medicinal barks were purchased from the Faraday and Kwa Mai-Mai markets in Johannesburg, South Africa. Information on the medicinal uses of bark-based medicines in modern commerce was recorded from randomly selected traders. The minimum inhibitory concentration (MIC) method was used for antimicrobial screening, and brine shrimp lethality was used to determine toxicity. New medicinal uses were recorded for 14 bark species. Plants demonstrating some broad-spectrum activities against tested bacteria include Elaeodendron transvaalense, Erythrina lysistemon, Garcinia livingstonei, Pterocelastrus rostratus, Rapanea melanophloeos, Schotia brachypetala, Sclerocarya birrea, and Ziziphus mucronata. The lowest MIC value of 0.004 mg/mL was observed against Staphylococcus epidermidis for a dichloromethane bark extract of E. lysistemon. The tested medicinal barks were shown to be non-toxic against the Artemia nauplii (brine shrimp) bioassay, except for a methanol extract from Trichilia emetica (69.52% mortality). Bacterial inhibition of bark extracts with minimal associated toxicity is consistent with the safety and valuable use of medicinal barks for local muthi market customers. Antimicrobial outcomes against skin and gastrointestinal pathogens are feasible because mere contact-inhibition is required in vivo; however, MIC values against respiratory pathogens require further explaining from a pharmacokinetics or pharmacodynamics perspective, particularly for ingested rather than smoked therapies.


Author(s):  
Bhong Prabha N. ◽  
Naikawade Nilofar. S. ◽  
Mali Pratibha. R. ◽  
Bindu Madhavi. S.

Objectives: The present study designed to evaluate the Antiasthmatic activity of aqueous extract of bark of Eugenia Jambolana (AEEJ) on in vitro and in vivo animal models. Materials and methods: Different in vitro and in vivo animal models was used to study the anti asthmatic activity as isolated goat tracheal chain preparation, Acetylcholine and Histamine induced bronconstriction in guinea pigs, effect of drug extract on histamine release from mast cell was checked by clonidine-induced mast cell degranulation, and milk-induced eosinophilia and leukocytosis. Results: In-vitro study on goat tracheal chain preparation revealed that aqueous extract of Eugenia jambolana (AEEJ)bark exerted antagonistic effect on the histamine induced contraction. (P<0.05) The guinea pigs when exposed to 0.2% histamine aerosol showed signs of progressive dyspnoea leading to convulsions. AEEJ significantly prolonged the latent period of convulsions (PCT) as compared to control following the exposure of histamine (0.2%) aerosol (P<0.01). The observation of present study indicates aqueous extract of Eugenia jambolana shows significant inhibition of milk induced eosinophilia and leukocytosis. Group of animals pretreated with aqueous Eugenia jambolana bark extract showed significant reduction in degranulation of mast cells when challenged with clonidine. The prevention of degranulation process by the aqueous Eugenia jambolana bark extract (P<0.01) indicates a possible stabilizing effect on the mast cells, indicating mast cell stabilizing activity. Conclusions: Thus, AEEJ showed antihistaminic, mast cell stabilizing and protective in guinea pigs against histamine induced PCD, reduced eosinophilia and leukocytosis and hence possesses potential role in the treatment of asthma.


2020 ◽  
Vol 4 (3) ◽  
pp. 247-251
Author(s):  
Z. Abdullahi ◽  
A. A. Jimoh ◽  
B. E. Patrick ◽  
M. I. Yakubu ◽  
D. Mallam

Different parts of Vitellaria paradoxa plant have many applications in ethno-medicine. Some of the uses of this plant include treatment of diarrhoea and other GIT disorders. In this study the antidiarrhoeal activity of the ethanol extract of Vitellaria paradoxa was evaluated using three experimental models: Castor oil-induced diarrhoea; small intestinal motility and intestinal fluid accumulation (enteropooling) models in mice. Five groups of five mice were used for each model. Group one mice received 10 ml/kg of distilled water, while groups 2, 3, and 4 received 125, 250 and 500 mg/kg of the extract orally respectively. Group 5 mice received Loperamide 5 mg/kg orally. Oral median lethal dose (LD50) of the extract was determined using OECD (2008) Guideline 425. Phytochemical studies were conducted using standard procedures. The LD50 was estimated to be greater than 5000 mg/kg body weight and there were no signs of mortality or visible signs of toxicity in all the mice treated. Phytochemical screening revealed the presence of carbohydrates, alkaloids, flavonoids, saponins, tannins, triterpenes, steroids, cardiac glycosides and anthraquinones glycosides. Extract showed a dose-dependent anti-diarrhoeal activity by reducing stool frequency and consistency. The extract at the higher doses significantly (p < 0.05) inhibited GIT motility and castor oil-induced enteropooling, comparable to that of the reference control drug Loperamide. The study showed that ethanol stem bark extract of Vitellaria paradoxa possess anti-diarrhoeal activity and thus justifies its ethno-medicinal use in the treatment of diarrhoea.


2018 ◽  
Vol 7 (4) ◽  
pp. 392-398
Author(s):  
B.T Yunana ◽  
◽  
B. B Bukar ◽  
J. C Aguiyi ◽  
◽  
...  

The ethanol extracts of root, bark and leaf of Bridelia ferruginea was investigated for antibacterial activity against clinical isolate of Staphylococcus aureus and Escherichia coli. The extracts had significant antibacterial activity in vitro at concentration of 25 mg/ml, 50 mg/ml, 100 mg/ml and 200 mg/ml and in vivo at dose of 50 mg/kg and 100 mg/kg. The root extract in vitro had the highest zone of inhibition, followed by the bark extract for both Staphylococcus aureus and Escherichia coli. The concentration of 200 mg/ml had the highest zone of inhibition in vitro. The minimum inhibitory concentration (MIC) showed a decreasing inhibitory effect of the plant extracts for both Staphylococcus aureus and Escherichia coli as the concentration decreases with root having 3.125 mg/ml, bark having 6.25 mg/ml and leaf having 25 mg/ml for Staphylococcus aureus and Escherichia coli. Likewise, the minimum bactericidal concentration (MBC) showed decreasing bactericide effects with decrease concentration with root having 12.5 mg/ml, bark having 12.5 mg/ml and leaf having 25 mg/ml for Escherichia coli while root had 6.25mg/ml, bark had 12.5mg/ml and leaf had 25mg/ml for Staphylococcus aureus. The in vivo investigation showed that the root and bark extract exhibited antibacterial activity on both Staphylococcus aureus and Escherichia coli at doses of 100mg/kg and 50mg/kg; the root extract had higher activity than the bark and root/bark combined. The dose of 100 mg/kg had the highest colonies reduction for Staphylococcus aureus and Escherichia coli in vivo. Preliminary phytochemical screening of root, bark and leaves of Bridelia ferruginea revealed the presence of tannins, flavonoids, carbohydrates, cardiac glycoside (root, bark and leaves), saponins (root and bark). The presence of tannins, saponins, flavonoid, cardiac glycoside and carbohydrate in the bark and root extracts of the plant indicates that the bark and root extracts were pharmacological importance


2016 ◽  
Vol 291 ◽  
pp. 66-74 ◽  
Author(s):  
Thaisa Baccarin ◽  
Aline Debrassi ◽  
Márcia M. de Souza ◽  
Rosendo A. Yunes ◽  
Ângela Malheiros ◽  
...  

1983 ◽  
Vol 61 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Noboru Fujihara ◽  
Masataka Shiino

The effect of thyrotrophin-releasing hormone (TRH, 10−7 M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone – releasing hormone (LH–RH, 10−7 M). Actinomycin D (2 × 10−5 M) and cycloheximide (10−4 M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).


Author(s):  
SUPRIYA RAJA H

Objective: Knema attenuata (Myristicaceae), popularly known as “wild nutmeg,” is an endemic tree species from Western Ghats, which has been used in folk medicine. Conventionally, the stem bark of K. attenuata is used for treating inflammatory conditions without any scientific information available for the same. The present study was undertaken to evaluate the anti-inflammatory activity of the ethanolic stem bark extract (ESBE) of K. attenuata using in vivo and in vitro screening models. Methods: The ethanolic extract of stem bark was prepared by soxhlation, and its cytotoxicity in RAW 264.7 cell line was assessed using MTT assay method. In vivo anti-inflammatory effect of extract was estimated in rats using carrageenan-induced paw edema model and cotton pellet-induced granuloma model. The in vitro anti-inflammatory activity of the extract was evaluated by cyclooxygenase and lipoxygenase inhibition assay, estimation of myeloperoxidase activity, and determination of cellular nitrite levels in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Results: Toxic symptoms were not observed for the ESBE. The extract demonstrated significant anti-inflammatory activity in both in vivo and in vitro models. The anti-inflammatory action exhibited by the extract was a result of the inhibition of leukocyte migration and nitric oxide pathway and partially by inhibition of mediators such as prostaglandins and leukotrienes. Conclusion: Findings from the study provide the evidence for the popular use of stem bark extract of K. attenuata as a potential anti-inflammatory agent.


1983 ◽  
Vol 103 (3) ◽  
pp. 293-301 ◽  
Author(s):  
Michael Warnhoff ◽  
Gunter Dorsch ◽  
Karl M. Pirke

Abstract. A perfusion system was developed in which isolated median eminences (ME) were stimulated in vitro by depolarizing agents such as potassium and veratridine. Potassium concentrations between 30 and 80 mm released increasing amounts of luteinizing hormone-releasing hormone (LRH) from the MEs of starved and control rats. Veratridine at a concentration of 50 μm caused a more prolonged LRH release in both starved and control animals. LRH secretion in vitro was slightly, though not under all conditions, significantly greater in rats starved for 5 days. The testosterone (T)-LH feedback was studied by castrating the animals and substituting various doses of T through implantation of T-releasing capsules of different sizes. The concentration in plasma, which can prevent the castration-induced much smaller in starved than in control rats. The in vitro release of LRH evoked by 80 mm potassium was not different for starved and fed rats under various feedback conditions. Both groups revealed decreased in vitro release of LRH when castrated animals were not substituted with T. The effect of castration was studied from 1 to 28 days. The plasma LH values rapidly increased in starved and control animals, indicating that the hypothalamic responsestration is not delayed by starvation. The release in vitro of LRH decreased from the first to the fifth day and remained constant thereafter. No significant difference between starved and fed rats was observed. The experiments indicate that the 'releasable pool' of LRH in vitro is greater under conditions of reduced LH release in vivo. The basic mechanism of depolarization-induced exocytosis of LRH from the ME is intact in starved animals.


1985 ◽  
Vol 106 (1) ◽  
pp. 27-30 ◽  
Author(s):  
J. D. Heather ◽  
S. A. Whitehead

ABSTRACT The acute in-vivo effects of a potent LH-releasing hormone (LHRH) agonist, buserelin, on LH secretion and pituitary responsiveness to LHRH have been investigated in oestrous rats. Doses of 50, 100 and 250 ng buserelin stimulated LH release in a dose-dependent manner, the peak serum LH concentrations being measured 1 h after the treatment. Thereafter LH levels fell rapidly between 1 and 6 h and by 18 h serum LH concentrations were similar in all groups of animals. Pituitary responsiveness to a challenge with 100 ng LHRH was potentiated by 50 or 100 ng buserelin injected 1 or 2 h before the LHRH challenge. In contrast, 250 ng buserelin completely abolished the LH response to LHRH when tested 1, 2 and 4 h after treatment, but by 6 h a small but attenuated response was observed. Four hours after treatment there was no significant difference in the responses when compared with the saline-treated controls. J. Endocr. (1985) 106, 27–30


Sign in / Sign up

Export Citation Format

Share Document