Transmission electron microscopy convergent beam measurement of S-phase volume fraction in AlLiCuMgZr alloy (8090)

1990 ◽  
Vol 25 (4) ◽  
pp. 325-337
Author(s):  
Xia Xiaoxin ◽  
J.W. Martin
1995 ◽  
Vol 10 (4) ◽  
pp. 791-794 ◽  
Author(s):  
S. Stemmer ◽  
S.K. Streiffer ◽  
W-Y. Hsu ◽  
F. Ernst ◽  
R. Raj ◽  
...  

We have used conventional and high-resolution transmission electron microscopy to investigate the microstruture of epitaxial, ferroelectric PbTiO3 films grown by pulsed laser ablation on (001) MgO single crystals, and on MgO covered with epitaxial Pt or SrTiO3. Pronounced variations are found in the widths and lengths of a-axis-oriented domains in these films, although the volume fraction of a-axis-oriented material varies only weakly for the different types of samples. In addition, the films deposited onto Pt-coated MgO have a larger grain size than those deposited onto bare MgO or SrTiO3/MgO. Possible reasons for the variations in the distribution of a-axis-oriented material in these samples include differences in the elastic properties and electrical conductivities of the different substrate combinations.


2015 ◽  
Vol 33 (6) ◽  
pp. 395-401 ◽  
Author(s):  
Ramasis Goswami

AbstractTransmission electron microscopy (TEM) was employed to investigate the dissolution behavior of nanocrystalline grain boundary T1 precipitates in Al-3Cu-2Li. These grain boundary T1 plates exhibit an orientation relation with matrix, with the (1-11)α-Al parallel to (0001)T1 and [022]α-Al parallel to [10-10]T1, which is similar to the orientation relationship of T1 plates formed within grains. TEM studies showed that these grain boundary T1 plates react readily in moist air. As a result of the localized dissolution, the Cu-rich clusters form onto T1, which is consistent with the localized dissolution behavior observed in nanocrystalline S phase in Al-Cu-Mg.


2011 ◽  
Vol 412 ◽  
pp. 263-266
Author(s):  
Hong Wei Zhang ◽  
Li Li Zhang ◽  
Feng Rui Zhai ◽  
Jia Jin Tian ◽  
Can Bang Zhang

The higher mechanical strength of Al87Ce3Ni8.5Mn1.5 nanophase amorphous composites has been obtained with two methods. The first nanophase amorphous composites are directly produced by the single roller spin quenching technology. The method taken for the second nanophase amorphous composites is at first to obtain amorphous single-phase alloy, followed by annealed at different temperatures .The formative condition, the microstructure, the particle size, the volume fraction of α-Al phase and microhardness of nanophase amorphous composites etc have been investigated and compared by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The microstructure of composites produced by the second method is higher than the former, the fabricated material structure of the system is more uniform and the process is easier to control.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 30 ◽  
Author(s):  
Ines Häusler ◽  
Reza Kamachali ◽  
Walid Hetaba ◽  
Birgit Skrotzki

The age hardening response of a high-purity Al–4Cu–1Li–0.25Mn alloy (wt. %) during isothermal aging without and with an applied external load was investigated. Plate shaped nanometer size T1 (Al2CuLi) and θ′ (Al2Cu) hardening phases were formed. The precipitates were analyzed with respect to the development of their structure, size, number density, volume fraction and associated transformation strains by conducting transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) studies in combination with geometrical phase analysis (GPA). Special attention was paid to the thickening of T1 phase. Two elementary types of single-layer T1 precipitate, one with a Li-rich (Type 1) and another with an Al-rich (Defect Type 1) central layer, were identified. The results show that the Defect Type 1 structure can act as a precursor for the Type 1 structure. The thickening of T1 precipitates occurs by alternative stacking of these two elementary structures. The thickening mechanism was analyzed based on the magnitude of strain associated with the precipitation transformation normal to its habit plane. Long-term aging and aging under load resulted in thicker and structurally defected T1 precipitates. Several types of defected precipitates were characterized and discussed. For θ′ precipitates, a ledge mechanism of thickening was observed. Compared to the normal aging, an external load applied to the peak aged state leads to small variations in the average sizes and volume fractions of the precipitates.


1965 ◽  
Vol 9 ◽  
pp. 59-73
Author(s):  
R. W. Gould ◽  
E. A. Starke

AbstractA study of the reversion process in Al-Zn-Mg alloys has been made using small-angle X-ray scattering and transmission electron microscopy techniques. The rate and mode of Guinier-Preston zone dissolutions was investigated as a function of magnesium content, prior zone radius, and reversion temperature. Results indicate that in this system the reversion process is characterized by the preferential dissolution of the smallest G-P zones present after cold aging with a corresponding decrease in the volume fraction of zones. The amount of reversion at a specific temperature is dependent on magnesium content, however, the rate of reversion is independent of magnesium content.


1996 ◽  
Vol 442 ◽  
Author(s):  
Dov Cohen ◽  
C. Barry Carter

AbstractAntiphase boundaries in GaP crystals epitactically grown on Si (001) have been characterized using transmission electron microscopy. Convergent-beam electron diffraction was used to identify the antiphase-related grains. The antiphase boundaries were observed to adopt facets parallel to specific crystallographic orientations. Furthermore, stacking-fault-like contrast was observed along the interface suggesting that the domains may be offset from one another by a rigid-body lattice translation.


Sign in / Sign up

Export Citation Format

Share Document