Effects of water stress on fruit growth and water relations between fruits and leaves in a hedgerow olive orchard

2018 ◽  
Vol 210 ◽  
pp. 32-40 ◽  
Author(s):  
Rafael Dreux Miranda Fernandes ◽  
Maria Victoria Cuevas ◽  
Antonio Diaz-Espejo ◽  
Virginia Hernandez-Santana
2011 ◽  
Vol 47 (1) ◽  
pp. 1-25 ◽  
Author(s):  
M. K. V. CARR ◽  
J. W. KNOX

SUMMARYThe results of research on the water relations and irrigation needs of sugar cane are collated and summarized in an attempt to link fundamental studies on crop physiology to irrigation practices. Background information on the centres of production of sugar cane is followed by reviews of (1) crop development, including roots; (2) plant water relations; (3) crop water requirements; (4) water productivity; (5) irrigation systems and (6) irrigation scheduling. The majority of the recent research published in the international literature has been conducted in Australia and southern Africa. Leaf/stem extension is a more sensitive indicator of the onset of water stress than stomatal conductance or photosynthesis. Possible mechanisms by which cultivars differ in their responses to drought have been described. Roots extend in depth at rates of 5–18 mm d−1 reaching maximum depths of > 4 m in ca. 300 d providing there are no physical restrictions. The Penman-Monteith equation and the USWB Class A pan both give good estimates of reference crop evapotranspiration (ETo). The corresponding values for the crop coefficient (Kc) are 0.4 (initial stage), 1.25 (peak season) and 0.75 (drying off phase). On an annual basis, the total water-use (ETc) is in the range 1100–1800 mm, with peak daily rates of 6–15 mm d−1. There is a linear relationship between cane/sucrose yields and actual evapotranspiration (ETc) over the season, with slopes of about 100 (cane) and 13 (sugar) kg (ha mm)−1 (but variable). Water stress during tillering need not result in a loss in yield because of compensatory growth on re-watering. Water can be withheld prior to harvest for periods of time up to the equivalent of twice the depth of available water in the root zone. As alternatives to traditional furrow irrigation, drag-line sprinklers and centre pivots have several advantages, such as allowing the application of small quantities of water at frequent intervals. Drip irrigation should only be contemplated when there are well-organized management systems in place. Methods for scheduling irrigation are summarized and the reasons for their limited uptake considered. In conclusion, the ‘drivers for change’, including the need for improved environmental protection, influencing technology choice if irrigated sugar cane production is to be sustainable are summarized.


2022 ◽  
Vol 261 ◽  
pp. 107374
Author(s):  
M. Corell ◽  
D. Pérez-López ◽  
L. Andreu ◽  
R. Recena ◽  
A. Centeno ◽  
...  

1980 ◽  
Vol 7 (2) ◽  
pp. 207 ◽  
Author(s):  
JR Wilson ◽  
MM Ludlow ◽  
MJ Fisher ◽  
E Schulze

Three tropical grasses, green panic (Panicum maximum var, trichoglume), spear grass (Heteropogon contortus) and buffel grass (Cenchrus ciliaris) and the tropical legume siratro (Macroptilium atropurpureum), were grown in plots in a semi-arid field environment. The water relations characteristics of leaves from plants subjected to a soil drying cycle were compared with those of unstressed leaves from plants in irrigated plots. Minimum water potentials attained in the stressed leaves were c. -44, - 38, - 33 and - 13 bar for the four species, respectively. The grass leaves adjusted osmotically to water stress, apparently through accumulation of solutes, so that there was a decrease in osmotic potential at full turgor (Ψπ100) of 5.5, 3.9 and 7.1 bar, and in water potential at zero turgor (Ψ0) of 8.6, 6.5 and 8.6 bar for green panic, spear grass and buffel respectively. Water stress appeared to increase slightly the proportion of bound water (B) and the bulk modulus of elasticity (ε) of the grass leaves, but it did not alter the relative water content at zero turgor (RWC0) or the ratio of turgid water content to dry weight of the tissue. The Ψπ100 and Ψ0 of stressed siratro leaves decreased by 2.5-4 bar and 3-5 bar respectively when subjected to soil drying cycles. These changes could be explained by the marked decrease in the ratio of turgid water content to dry weight of the leaf tissue rather than by accumulation of solutes. The values of RWC0 and ε for siratro leaves were not altered by stress but, in contrast to the grasses, B was apparently decreased although the data exhibited high variability. Adjustments in Ψπ100 and Ψ0 of stressed leaves of buffel grass and siratro were largely lost within 10 days of rewatering.


2016 ◽  
Vol 202 ◽  
pp. 9-16 ◽  
Author(s):  
M.R. Conesa ◽  
J.M. de la Rosa ◽  
R. Domingo ◽  
S. Bañon ◽  
A. Pérez-Pastor

1984 ◽  
Vol 14 (1) ◽  
pp. 77-84 ◽  
Author(s):  
R. O. Teskey ◽  
C. C. Grier ◽  
T. M. Hinckley

Seasonal changes in water relations and net photosynthesis were measured over a year in current and 1-year-old foliage of Abiesamabilis (Dougl.) Forbes, a subalpine conifer. Responses were compared with maximum rates achieved in older foliage. Current-year foliage developed slowly during the growing season. Although growth began on 22 June, highest rates of stomatal conductance and net photosynthesis did not occur until September and October. One-year-old foliage had the highest rates of net photosynthesis (12.9 mg CO2•dm−2•h−1) and stomatal conductance (3.1 mm•s−1) during the summer. Net photosynthesis decreased with needle age, but foliage as old as 7 years had rates of net photosynthesis as high as 5.0 mg CO2•dm−2•h−1. There was no evidence of photosynthetic adjustment to seasonal change in temperature. The optimum temperature for photosynthesis remained at 15 ± 1.5 °C throughout the year. No water stress was observed during the summer. Xylem water potential never decreased below −1.65 MPa and was always well above the turgor loss point. The lack of any apparent water stress, combined with photosynthetic characteristics, indicated that summer was the most important season for carbon gain. These results also suggested that a strategy for competitive success by Abiesamabilis in this cold, stressful environment is minimum dependence on the carbon gain of any individual age-class of foliage. Instead trees rely on the combined photosynthetic capacity of many years of foliage.


Sign in / Sign up

Export Citation Format

Share Document