Effect of the perception of breakfast consumption on appetite and energy intake in healthy males.

Appetite ◽  
2021 ◽  
pp. 105575
Author(s):  
Tommy Slater ◽  
William J.A. Mode ◽  
John Hough ◽  
Ruth James ◽  
Craig Sale ◽  
...  
2012 ◽  
Vol 108 (4) ◽  
pp. 755-758 ◽  
Author(s):  
Charlotte J. Harden ◽  
Adam N. Jones ◽  
Tannia Maya-Jimenez ◽  
Margo E. Barker ◽  
Natalie J. Hepburn ◽  
...  

Long-chain fatty acids have been shown to suppress appetite and reduce energy intake (EI) by stimulating the release of gastrointestinal hormones such as cholecystokinin (CCK). The effect of NEFA acyl chain length on these parameters is not comprehensively understood. Anin vitroscreen tested the capacity of individual NEFA (C12 to C22) to trigger CCK release. There was a gradient in CCK release with increasing chain length. DHA (C22) stimulated significantly (P < 0·01) more CCK release than all other NEFA tested. Subsequently, we conducted a randomised, controlled, crossover intervention study using healthy males (n18). The effects of no treatment (NT) and oral doses of emulsified DHA-rich (DHA) and oleic acid (OA)-rich oils were compared using 24 h EI as the primary endpoint. Participants reported significantly (P = 0·039) lower total daily EI (29 % reduction) with DHA compared to NT. There were no differences between DHA compared to OA and OA compared to NT. There was no between-treatment difference in the time to, or EI of, the first post-intervention eating occasion. It is concluded that NEFA stimulate CCK release in a chain length-dependent manner up to C22. These effects may be extended to thein vivosetting, as a DHA-based emulsion significantly reduced short-term EI.


Appetite ◽  
2020 ◽  
Vol 147 ◽  
pp. 104564 ◽  
Author(s):  
Alex Griffiths ◽  
Kevin Deighton ◽  
Oliver M. Shannon ◽  
Chris Boos ◽  
Joshua Rowe ◽  
...  

Appetite ◽  
2021 ◽  
pp. 105577
Author(s):  
William J.A. Mode ◽  
Charlotte Small ◽  
Samuel Johns ◽  
Tommy Slater ◽  
John Hough ◽  
...  

2007 ◽  
Vol 293 (6) ◽  
pp. R2170-R2178 ◽  
Author(s):  
Amelia N. Pilichiewicz ◽  
Penny Papadopoulos ◽  
Ixchel M. Brennan ◽  
Tanya J. Little ◽  
James H. Meyer ◽  
...  

Both load and duration of small intestinal lipid infusion affect antropyloroduodenal motility and CCK and peptide YY (PYY) release at loads comparable to and higher than the normal gastric emptying rate. We determined 1) the effects of intraduodenal lipid loads well below the mean rate of gastric emptying on, and 2) the relationships between antropyloroduodenal motility, CCK, PYY, appetite, and energy intake. Sixteen healthy males were studied on four occasions in double-blind, randomized fashion. Antropyloroduodenal motility, plasma CCK and PYY, and appetite perceptions were measured during 50-min IL (Intralipid) infusions at: 0.25 (IL0.25), 1.5 (IL1.5), and 4 (IL4) kcal/min or saline (control), after which energy intake at a buffet meal was quantified. IL0.25 stimulated isolated pyloric pressure waves (PWs) and CCK release, albeit transiently, and suppressed antral PWs, PW sequences, and hunger ( P < 0.05) but had no effect on basal pyloric pressure or PYY when compared with control. Loads ≥ 1.5 kcal/min were required for the stimulation of basal pyloric pressures and PYY and suppression of duodenal PWs ( P < 0.05). All of these effects were related to the lipid load ( R > 0.5 or < −0.5, P < 0.05). Only IL4 reduced energy intake (in kcal: control, 1,289 ± 62; IL0.25, 1,282 ± 44; IL1.5, 1,235 ± 71; and IL4, 1,139 ± 65 compared with control and IL0.25, P < 0.05). In conclusion, in healthy males the effects of intraduodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, appetite, and energy intake are load dependent, and the threshold loads required to elicit responses vary for these parameters.


Appetite ◽  
2011 ◽  
Vol 57 ◽  
pp. S38
Author(s):  
A.T. Ryan ◽  
A. Kallas ◽  
P.M. Clifton ◽  
J.M. Wishart ◽  
M. Horowitz ◽  
...  
Keyword(s):  

2009 ◽  
Vol 296 (4) ◽  
pp. R912-R920 ◽  
Author(s):  
Radhika V. Seimon ◽  
Kate L. Feltrin ◽  
James H. Meyer ◽  
Ixchel M. Brennan ◽  
Judith M. Wishart ◽  
...  

Intraduodenal infusions of both lipid and glucose modulate antropyloroduodenal motility and stimulate plasma CCK, with lipid being more potent than glucose. Both stimulate glucagon-like peptide-1, but only lipid stimulates peptide YY (PYY), while only glucose raises blood glucose and stimulates insulin. When administered in combination, lipid and carbohydrate may, thus, have additive effects on energy intake. However, elevated blood glucose levels do not suppress energy intake, and the effect of insulin is controversial. We hypothesized that increasing the ratio of maltodextrin, a complex carbohydrate, relative to lipid would be associated with a reduction in effects on antropyloroduodenal pressures, gut hormones, appetite, and energy intake, when compared with lipid alone. Ten healthy males were studied on three occasions in double-blind, randomized order. Antropyloroduodenal pressures, plasma CCK, PYY and insulin, blood glucose, and appetite were measured during 90-min intraduodenal infusions of 1) 3 kcal/min lipid (L3), 2) 2 kcal/min lipid and 1 kcal/min maltodextrin (L2/CHO1), or 3) 1 kcal/min lipid and 2 kcal/min maltodextrin (L1/CHO2). Energy intake at a buffet lunch consumed immediately after the infusion was quantified. Reducing the lipid (thus, increasing the carbohydrate) content of the infusion was associated with reduced stimulation of basal pyloric pressures ( r = 0.76, P < 0.01), plasma CCK ( r = 0.66, P < 0.01), and PYY ( r = 0.98, P < 0.001), and reduced suppression of antral ( r = −0.64, P < 0.05) and duodenal ( r = −0.69, P < 0.05) pressure waves, desire-to-eat ( r = −0.8, P < 0.001), and energy intake ( r = 0.74, P < 0.01), with no differences in phasic (isolated) pyloric pressures. In conclusion, in healthy males, intraduodenal lipid is a more potent modulator of gut function, associated with greater suppression of energy intake, when compared with isocaloric combinations of lipid and maltodextrin.


Author(s):  
Tommy Slater ◽  
William J. A. Mode ◽  
John Hough ◽  
Ruth M. James ◽  
Craig Sale ◽  
...  

Abstract Purpose This study aimed to assess the effects of consuming a very-low-energy placebo breakfast on subsequent appetite and lunch energy intake. Methods Fourteen healthy males consumed water-only (WAT), very-low-energy, viscous placebo (containing water, low-calorie flavoured squash, and xanthan gum; ~ 16 kcal; PLA), and whole-food (~ 573 kcal; FOOD) breakfasts in a randomised order. Subjects were blinded to the energy content of PLA and specific study aims. Venous blood samples were collected pre-breakfast, 60- and 180-min post-breakfast to assess plasma acylated ghrelin and peptide tyrosine tyrosine concentrations. Subjective appetite was measured regularly, and energy intake was assessed at an ad libitum lunch meal 195-min post-breakfast. Results Lunch energy intake was lower during FOOD compared to WAT (P < 0.05), with no further differences between trials (P ≥ 0.132). Cumulative energy intake (breakfast plus lunch) was lower during PLA (1078 ± 274 kcal) and WAT (1093 ± 249 kcal), compared to FOOD (1554 ± 301 kcal; P < 0.001). Total area under the curve (AUC) for hunger, desire to eat and prospective food consumption were lower, and fullness was greater during PLA and FOOD compared to WAT (P < 0.05). AUC for hunger was lower during FOOD compared to PLA (P < 0.05). During FOOD, acylated ghrelin was suppressed compared to PLA and WAT at 60 min (P < 0.05), with no other hormonal differences between trials (P ≥ 0.071). Conclusion Consuming a very-low-energy placebo breakfast does not alter energy intake at lunch but may reduce cumulative energy intake across breakfast and lunch and attenuate elevations in subjective appetite associated with breakfast omission. Trial registration NCT04735783, 2nd February 2021, retrospectively registered.


2010 ◽  
Vol 298 (3) ◽  
pp. E614-E621 ◽  
Author(s):  
Meena Asmar ◽  
Winnie Tangaa ◽  
Sten Madsbad ◽  
Kristine Hare ◽  
Arne Astrup ◽  
...  

We investigated the role of glucose-dependent insulintropic polypeptide (GIP) in the regulation of gastric emptying (GE), appetite, energy intake (EI), energy expenditure (EE), plasma levels of triglycerides (TAG), and free fatty acids (FFA) in humans. First, 20 healthy males received intravenous infusion of GIP (0.8 pmol·kg−1·min−1) or saline for 300 min during and after a fixed meal ( protocol 1). GE was measured using paracetamol, appetite sensations using visual analog scales, EE using indirect calorimetry, and EI during a subsequent ad libitum meal (at 300 min). Next, 10 healthy males received intravenous infusions of Intralipid, glucose, or Intralipid plus glucose, with and without GIP (1.5 pmol·kg−1·min−1) for 300 min ( protocol 2). In protocol 1, GIP did not have any effect on GE, EI, EE, removal of TAG, or FFA and did not influence the subjective feeling of hunger, satiety, fullness or prospective food consumption compared with saline. In protocol 2, no difference was seen in the plasma TAG on Intralipid + GIP/saline and Intralipid + glucose + GIP/saline days. FFA concentrations were lower on Intralipid + glucose + GIP/saline days ( P < 0.05) compared with Intralipid + GIP/saline days and on Intralipid + GIP day ( P < 0.004) compared with Intralipid + saline day. Insulin increased on all GIP days compared with saline days ( P < 0.05). In conclusion, while confirming its insulinotropic effects, these data suggest that GIP does not affect GE, appetite, energy intake, EE, or the clearance rate of the applied TAG formulation in humans. However, both insulin and GIP lower post-Intralipid FFA concentration, GIP probably via stimulation of insulin secretion, increasing FFA reesterification.


Sign in / Sign up

Export Citation Format

Share Document