Ultrasensitive isothermal method to detect microRNA based on target-induced chain amplification reaction

2021 ◽  
Vol 178 ◽  
pp. 113048
Author(s):  
Hyo Yong Kim ◽  
Jayeon Song ◽  
Hyun Gyu Park
2021 ◽  
Author(s):  
Jake G. Carter ◽  
Lorea Orueta Iturbe ◽  
Jean-Louis H. A. Duprey ◽  
Ian R. Carter ◽  
Craig D. Southern ◽  
...  

We report a rapid isothermal method for detecting SARS-CoV-2, the virus responsible for COVID-19. The procedure uses a novel reverse transcriptase-free (RTF) approach for converting RNA into DNA, which triggers a rapid amplification using the Exponential Amplification Reaction (EXPAR). Deploying the RNA-to-DNA conversion and amplification stages of the RTF-EXPAR assay in a single step results in the detection of a sample of patient SARS-CoV-2 RNA in under 5 minutes.


2021 ◽  
Vol 118 (35) ◽  
pp. e2100347118
Author(s):  
Jake G. Carter ◽  
Lorea Orueta Iturbe ◽  
Jean-Louis H. A. Duprey ◽  
Ian R. Carter ◽  
Craig D. Southern ◽  
...  

A rapid isothermal method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, is reported. The procedure uses an unprecedented reverse transcription–free (RTF) approach for converting genomic RNA into DNA. This involves the formation of an RNA/DNA heteroduplex whose selective cleavage generates a short DNA trigger strand, which is then rapidly amplified using the exponential amplification reaction (EXPAR). Deploying the RNA-to-DNA conversion and amplification stages of the RTF-EXPAR assay in a single step results in the detection, via a fluorescence read-out, of single figure copy numbers per microliter of SARS-CoV-2 RNA in under 10 min. In direct three-way comparison studies, the assay has been found to be faster than both RT-qPCR and reverse transcription loop-mediated isothermal amplification (RT-LAMP), while being just as sensitive. The assay protocol involves the use of standard laboratory equipment and is readily adaptable for the detection of other RNA-based pathogens.


2008 ◽  
Vol 98 (9) ◽  
pp. 1045-1051 ◽  
Author(s):  
R. Kubota ◽  
B. G. Vine ◽  
A. M. Alvarez ◽  
D. M. Jenkins

Ralstonia solanacearum is a pathogenic bacterium that causes wilt in over 200 plant species. Here we report a rapid and sensitive detection of R. solanacearum using an isothermal method for copying DNA known as loop-mediated amplification (LAMP). A set of four primers was designed to replicate the gene coding for the flagellar subunit, fliC, and conditions for detection were optimized to complete in 60 min at 65°C. Magnesium pyrophosphate resulting from the amplification reaction could be detected optically as an increase in the solution turbidity, and the DNA products spread in a reproducible ladder-like banding pattern after electrophoresis in an agarose gel. Replication of the fliC gene was detected only from R. solanacearum. The detection limit of this LAMP assay was between 104 to 106 colony forming units/ml, and the technique may be useful for developing rapid and sensitive detection methods for the R. solanacearum pathogen in soil and water.


2010 ◽  
Vol 105 (2) ◽  
pp. 467-471 ◽  
Author(s):  
Marcelo Kobelnik ◽  
Clóvis A. Ribeiro ◽  
Diógenes dos Santos Dias ◽  
Sonia de Almeida ◽  
Marisa Spirandeli Crespi ◽  
...  

Author(s):  
Jian Guo ◽  
Jianliang Zhang ◽  
Guangwei Wang ◽  
Weiwei Geng ◽  
Changle Zheng ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Jun Ji ◽  
Qinxi Chen ◽  
Zhengli Yu ◽  
Xin Xu ◽  
Xinhao Mu ◽  
...  

In this study, a one-step isothermal method combining polymerase spiral reaction (PSR) with reverse transcription (RT-PSR) was established for rapid and specific detection of novel astroviruses causing fatal gout in goslings (N-GoAstV). The one-step RT-PSR was accomplished at the optimal temperature of 62°C and time of 40 min and used primers simply designed as conventional PCR primers, and the results of detection were visible to the naked eye. The detection limit of PSR was above 34.7 copies/μL at a 95% probability level according to probit regression analysis. The assay specifically detected N-GoAstV, and no other reference viruses were detected. These results suggest that the newly established RT-PSR assay could, in one step, accomplish reverse-transcription, amplification, and result determination providing a visible, convenient, rapid, and cost-effective test that can be carried out onsite, in order to ensure timely quarantine of N-GoAstV-infected birds, leading to effective disease control.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2501
Author(s):  
Shuxin Chen ◽  
Xiaowen Lv ◽  
Jifan Shen ◽  
Siqi Pan ◽  
Zhiliang Jiang ◽  
...  

A new method for the determination of oxytetracycline (OTC) has been established by coupling the catalytic amplification reaction of copper nanoclusters (CuNCs) with the aptamer reaction. CuNCs prepared by a wet chemical method have the catalytic activity for the formation of gold nanoparticles (AuNPs) resulting from a HAuCl4-ethanol (En) reaction. The experimental results showed that OTC aptamer (Apt) can be adsorbed on the surface of CuNCs in a non-specific way, thus inhibiting its catalytic activity. When OTC was added to the solution, the OTC-Apt complex was generated by a specific reaction, which made the CuNCs desorb and restore their catalytic activity. With the increase of OTC, the recovery of the catalytic activity of CuNCs is strengthened, the reaction speed is accelerated, and the number of AuNPs is increased. The generated AuNPs exhibited surface enhanced Raman scattering (SERS) signals at 1615 cm−1 in the presence of Vitoria blue 4R (VB4R) molecular probes, and a resonance Rayleigh scattering (RRS) peak at 586 nm. There is a good linear relationship between the intensities of SERS, or RRS, and OTC concentration at the range of 37.5–300 ng/L or 37.5–225 ng/L, respectively. A new SERS and RRS assay for the determination of trace OTC based on the regulation of CuNCs catalysis was established.


Sign in / Sign up

Export Citation Format

Share Document