Sex and dose-dependent antinociceptive effects of the JNK (c-Jun N-terminal kinase) inhibitor SU 3327 are mediated by CB2 receptors in female, and CB1/CB2 receptors in male mice in an inflammatory pain model

Author(s):  
Henry L. Blanton ◽  
Agata Pietrzak ◽  
Melissa C. McHann ◽  
Josée Guindon
2015 ◽  
Vol 53 (11) ◽  
pp. 1621-1627 ◽  
Author(s):  
Sonja Vuckovic ◽  
Dragana Srebro ◽  
Katarina Savic Vujovic ◽  
Milica Prostran

2020 ◽  
Vol 11 ◽  
Author(s):  
Chizuko Watanabe ◽  
Asami Komiyama ◽  
Masaru Yoshizumi ◽  
Shinobu Sakurada ◽  
Hirokazu Mizoguchi

The antinociceptive effect of methadone in the morphine-resistant inflammatory pain state was described in the paw-withdrawal test using the complete Freund’s adjuvant (CFA)-induced mouse inflammatory pain model. After intraplantar (i.pl.) injection of CFA, thermal hyperalgesia was observed in the ipsilateral paw. The antinociceptive effects of subcutaneous (s.c.) injection of morphine, fentanyl, and oxycodone against thermal hyperalgesia in the inflammatory pain state were reduced in the ipsilateral paw 7 days after CFA pretreatment. On the contrary, the antinociceptive effect of s.c. injection of methadone was maintained in the ipsilateral paw 7 days after CFA pretreatment. The suppressed morphine antinociception in the CFA model mice was bilaterally restored following s.c. treatment with methadone 20 min prior to or 3 days after CFA pretreatment. The suppressed morphine antinociception was also bilaterally restored by intraperitoneal treatment with MK-801 30 min prior to CFA pretreatment; however, the s.c. injection of morphine 30 min prior to CFA pretreatment failed to restore the suppressed morphine antinociception in the CFA model mice. The expression level of mRNA for µ-opioid receptors 7 days after i.pl. pretreatment was not significantly changed by i.pl. pretreatment with CFA or s.c. pretreatment with methadone. In conclusion, methadone is extremely effective against thermal hyperalgesia in the morphine-resistant inflammatory pain state, and restores suppressed morphine antinociception in the inflammatory pain state without altering the expression level of mRNA for µ-opioid receptors.


2015 ◽  
Vol 82 ◽  
pp. 1-9 ◽  
Author(s):  
Xiao-Na Wu ◽  
Tao Zhang ◽  
Nian-Song Qian ◽  
Xiao-Dong Guo ◽  
Hong-Jun Yang ◽  
...  

2020 ◽  
Vol 6 (4) ◽  
pp. 344-354
Author(s):  
Tingji Shao ◽  
Shaobin Yang ◽  
Peng Yu

Neuronostatin (NST) is a peptide encoded by the somatostatin gene that serves important physiological functions in diverse tissues. Previous studies have shown that intracerebroventricular administration of NST induces antinociceptive effects and hyperalgesic effects as determined by the tail immersion assay and formalin test, respectively. In the present study, we aimed to evaluate the effects of intrathecal (i.t.) injection of NST on nociception in a model of visceral pain, and determine possible mechanisms of action in mice. NST (1, 3, 6, or 12 nmol) was administered to mice, leading to a dose‐dependent antinociceptive effect as determined by the acetic acid‐induced writhing test in mice. NST (1 nmol) also enhanced the antinociceptive effect of morphine (2.5 and 5 μg/kg) in the spine. Naloxone and β‐funaltrexamine hydrochloride significantly antagonized the antinociceptive effect of NST. The expression of G‐protein‐coupled receptor 107 (GPR107) protein and the phosphorylation of PKA at Thr197 were increased after i.t. administration of NST, suggesting that the μ‐opioid receptor and GPR107/PKA signaling pathway are involved in the analgesic response. In conclusion, i.t. injection of NST may potentially be used as a new approach in the mediation of visceral pain.


2018 ◽  
Vol 13 (5) ◽  
pp. 1934578X1801300
Author(s):  
Luciane Angela Nottar Nesello ◽  
Adriana Campos ◽  
Karla Capistrano ◽  
Fátima de Campos Buzzi ◽  
Valdir Cechinel Filho

The present study deals with the chemical composition and antinociceptive effects of Plinia edulis fruit peels, analyzed by writhing, formalin, glutamate and capsaicin tests and comparison with two reference analgesic drugs, acetylsalicylic acid and acetaminophen. Phytochemical analyses of the nonpolar fraction (dichloromethane) obtained from the peels of P. edulis fruits revealed the presence of two triterpenes, maslinic acid and ursolic acid. The methanol extract of P. edulis peels showed a pronounced antinociceptive activity in the writhing test, with inhibition of 91.3% at 10 mg/kg, and its dichloromethane and ethyl acetate fractions presented inhibition of 68.3% and 51.5%, respectively. Maslinic acid showed a dose-dependent effect with inhibition of 60.8% at a dose of 10 mg/kg and ID50 value of 3.31 (2.75 to 4.0) mg/kg. The dichloromethane fraction, evaluated in the formalin-induced pain model at a dose of 10 mg/kg, showed a significant effect on both phases of pain. Maslinic acid was evaluated at different doses (1, 3 and 6 mg/kg) and presented a dose-dependent profile in both phases of pain, being more effective than the reference drug (acetaminophen), which was evaluated at 10 mg/kg. The dichloromethane fraction also inhibited the pain induced by glutamate and capsaicin by around 54% and 44%, respectively, whereas maslinic acid was more effective against glutamate, with 62.5% inhibition at 6 mg/kg, and 32% inhibition against capsaicin-induced pain. The results demonstrated that the pronounced antinociceptive effect presented by P. edulis fruits peels is related, at least in part, to the presence of the triterpenes evidenced in this study.


Author(s):  
Retno Widyowati ◽  
Suciati Suciati ◽  
Dewi Melani Haryadi ◽  
Hsin-I Chang ◽  
IPG Ngurah Suryawan ◽  
...  

Abstract Objectives Glucocorticoid-induced osteoporosis (dexamethasone) is a primary cause of secondary osteoporosis by the decreasing formation and increasing resorption activities. Previously, the in vitro study showed that 70% ethanol and aqueous extract of deer antler have increased alkaline phosphatase in osteoblast cell that known as marker of bone formation. The mind of this study is to analyze the effect of deer antlers in increasing the bone trabecular density of osteoporosis-induced male mice. Methods This study used a post-test control group design. A total of 54 healthy male mice were randomly divided to nine groups, i.e., healthy control, osteoporotic, positive control, 70% ethanol (4, 8, and 12 mg/kg BW), and aqueous extracts (4, 8, and 12 mg/kg BW) of deer antler groups. All of the interventions were given 1 mL of test sample for 4 weeks orally. The bone densities were determined using histomorphometry by Image J and Adobe Photoshop. The statistical data were performed using SPSS 23 and statistical significance was set at p<0.05. Results The results showed that alendronate group, 70% ethanol, and aqueous extract groups increased bone density and calcium levels in serum (p<0.05) compared to osteoporotic group in dose dependent manner. It indicated that 70% ethanol and aqueous extract of deer antler stimulating bone turnover and aqueous extract showed the highest. Conclusions Dexamethasone induction for 4 weeks caused osteoporotic mice and the administration of 70% ethanol and aqueous extracts of deer antler from East Kalimantan increased trabecular bone density and calcium levels in dose dependent manner.


Author(s):  
Hai-Yan Yin ◽  
Ya-Peng Fan ◽  
Juan Liu ◽  
Dao-Tong Li ◽  
Jing Guo ◽  
...  

AbstractPurinergic signalling adenosine and its A1 receptors have been demonstrated to get involved in the mechanism of acupuncture (needling therapy) analgesia. However, whether purinergic signalling would be responsible for the local analgesic effect of moxibustion therapy, the predominant member in acupuncture family procedures also could trigger analgesic effect on pain diseases, it still remains unclear. In this study, we applied moxibustion to generate analgesic effect on complete Freund’s adjuvant (CFA)-induced inflammatory pain rats and detected the purine released from moxibustioned-acupoint by high-performance liquid chromatography (HPLC) approach. Intramuscular injection of ARL67156 into the acupoint Zusanli (ST36) to inhibit the breakdown of ATP showed the analgesic effect of moxibustion was increased while intramuscular injection of ATPase to speed up ATP hydrolysis caused a reduced moxibustion-induced analgesia. These data implied that purinergic ATP at the location of ST36 acupoint is a potentially beneficial factor for moxibustion-induced analgesia.


Sign in / Sign up

Export Citation Format

Share Document