scholarly journals Regulatory mechanisms governing chromatin organization and function

2021 ◽  
Vol 70 ◽  
pp. 10-17
Author(s):  
Rodrigo Villaseñor ◽  
Tuncay Baubec
Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3951
Author(s):  
Sarva Keihani ◽  
Verena Kluever ◽  
Eugenio F. Fornasiero

The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a ‘coding molecule’ has been largely surpassed, together with the conception that lncRNAs only represent ‘waste material’ produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.


1987 ◽  
Vol 7 (8) ◽  
pp. 2977-2980
Author(s):  
E A Fyrberg ◽  
C C Karlik

We describe a genetic transformation system which should prove useful for investigating tropomyosin assembly and function. Muscle abnormalities associated with a defective tropomyosin allele were corrected by integrating the wild-type gene into germ line chromosomes. The transformation protocol permits application of directed mutagenesis techniques in investigations of contractile regulatory mechanisms.


2008 ◽  
Vol 36 (6) ◽  
pp. 1329-1334 ◽  
Author(s):  
Tatiana V. Cohen ◽  
Lidia Hernandez ◽  
Colin L. Stewart

Recent findings that some 24 inherited diseases and anomalies are caused by defects in proteins of the NE (nuclear envelope) and lamina have resulted in a fundamental reassessment of the functions of the NE and underlying lamina. Instead of just regarding the NE and lamina as a molecular filtering device, regulating the transfer of macromolecules between the cytoplasm and nucleus, we now envisage the NE/lamina functioning as a key cellular ‘hub’ in integrating critical functions that include chromatin organization, transcriptional regulation, mechanical integrity of the cell and signalling pathways, as well as acting as a key component in the organization and function of the cytoskeleton.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Justyna Szczykutowicz ◽  
Anna Kałuża ◽  
Maria Kaźmierowska-Niemczuk ◽  
Mirosława Ferens-Sieczkowska

For human infertility both male and female factors may be equally important. Searching for molecular biomarkers of male infertility, neglected for decades, and the attempts to explain regulatory mechanisms of fertilization become thus extremely important. Apart from examination of the structure and function of male gametes, also the possible importance of seminal plasma components should be considered. In this article we discuss data that indicate for the substantial significance of active seminal plasma components for conception and achievement of healthy pregnancy. Seminal plasma impact on the storage and cryopreservation of human and animal sperm and regulatory role of glycodelin on human sperm capacitation as well as hypothesized course of female immune response to allogenic sperm and conceptus has been discussed. The possible involvement of carbohydrates in molecular mechanism of fetoembryonic defense has been also mentioned.


2009 ◽  
Vol 297 (2) ◽  
pp. R275-R290 ◽  
Author(s):  
Yung-Che Tseng ◽  
Ruo-Dong Chen ◽  
Jay-Ron Lee ◽  
Sian-Tai Liu ◽  
Shyh-Jye Lee ◽  
...  

Glucose, a carbohydrate metabolite, plays a major role in the energy supply for fish iono- and osmoregulation, and the way that glucose is transported in ionocytes is a critical process related to the functional operations of ionocytes. Eighteen members of glucose transporters (GLUTs, SLC2A) were cloned and identified from zebrafish. Previously, Na+,K+-ATPase-rich (NaR), Na+-Cl− cotransporter-expressing (NCC), H+-ATPase-rich (HR), and glycogen-rich (GR) cells have been identified to be responsible for Ca2+ uptake, Cl− uptake, Na+ uptake, and the energy deposition, respectively, in zebrafish skin/gills. The purpose of the present study was to test the hypothesis of whether GLUT isoforms are specifically expressed and function in ionocytes to supply energy for ion regulatory mechanisms. On the basis of translational knockdown of foxi3a/ 3b (2 transcriptional factors related to the ionocytes' differentiation) and triple in situ hybridization/immunocytochemistry, 3 GLUT isoforms, zglut1a, - 6, and - 13.1, were specifically localized in NaR/NCC cells, GR cells, and HR cells, respectively. mRNA expression of zglut1a in embryos and adult gills were stimulated by the low Ca2+ or low Cl− freshwater, which has been previously reported to upregulate the functions (monitored by epithelial Ca2+ channel, NCC mRNA) of NaR/NCC cells, respectively while that of zglut13.1 was stimulated only by low Na+, a situation to upregulate the function (monitored by carbonic anhydrase 15a mRNA) of HR cells. On the other hand, ambient ion compositions did not affect the zglut6 mRNA expression. Taken together, zGLUT1a, -6, and 13.1, the specific transporters in NaR/NCC cells, GR cells, and HR cells, may absorb glucose into the respective cells to fulfill different physiological demands.


2010 ◽  
Vol 18 (3) ◽  
pp. 307-324 ◽  
Author(s):  
Annemarie Hofmann ◽  
Madeleine Brünner ◽  
Alexander Schwendemann ◽  
Martin Strödicke ◽  
Sascha Karberg ◽  
...  

1987 ◽  
Vol 7 (8) ◽  
pp. 2977-2980 ◽  
Author(s):  
E A Fyrberg ◽  
C C Karlik

We describe a genetic transformation system which should prove useful for investigating tropomyosin assembly and function. Muscle abnormalities associated with a defective tropomyosin allele were corrected by integrating the wild-type gene into germ line chromosomes. The transformation protocol permits application of directed mutagenesis techniques in investigations of contractile regulatory mechanisms.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ying Tan ◽  
Fengfan Xia ◽  
Lulan Li ◽  
Xiaojie Peng ◽  
Wenqian Liu ◽  
...  

Mitochondria maintain mitochondrial homeostasis through continuous fusion and fission, that is, mitochondrial dynamics, which is precisely mediated by mitochondrial fission and fusion proteins, including dynamin-related protein 1 (Drp1), mitofusin 1 and 2 (Mfn1/2), and optic atrophy 1 (OPA1). When the mitochondrial fission and fusion of cardiomyocytes are out of balance, they will cause their own morphology and function disorders, which damage the structure and function of the heart, are involved in the occurrence and progression of cardiovascular disease such as ischemia-reperfusion injury (IRI), septic cardiomyopathy, and diabetic cardiomyopathy. In this paper, we focus on the latest findings regarding the molecular features and regulatory mechanisms of mitochondrial dynamic disorder in cardiovascular pathologies. Finally, we will address how these findings can be applied to improve the treatment of cardiovascular disease.


Sign in / Sign up

Export Citation Format

Share Document