Effects of thermal modification of a biochar on persulfate activation and mechanisms of catalytic degradation of a pharmaceutical

2020 ◽  
Vol 399 ◽  
pp. 125377 ◽  
Author(s):  
Do-Gun Kim ◽  
Seok-Oh Ko
RSC Advances ◽  
2016 ◽  
Vol 6 (113) ◽  
pp. 112502-112511 ◽  
Author(s):  
Jiumei Wang ◽  
Jinquan Wan ◽  
Yongwen Ma ◽  
Yan Wang ◽  
Mengjie Pu ◽  
...  

Possible mechanism for the activation of PS by MIL-88A involves heterogeneous and homogeneous reaction.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Tong ◽  
Jiao Li ◽  
Jun Ma ◽  
Xiaoquan Chen ◽  
Wenhao Shen

Studies were undertaken to evaluate gaseous pollutants in workplace air within pulp and paper mills and to consider the effectiveness of photo-catalytic treatment of this air. Ambient air at 30 sampling sites in five pulp and paper mills of southern China were sampled and analyzed. The results revealed that formaldehyde and various benzene-based molecules were the main gaseous pollutants at these five mills. A photo-catalytic reactor system with titanium dioxide (TiO2) was developed and evaluated for degradation of formaldehyde, benzene and their mixtures. The experimental results demonstrated that both formaldehyde and benzene in their pure forms could be completely photo-catalytic degraded, though the degradation of benzene was much more difficult than that for formaldehyde. Study of the photo-catalytic degradation kinetics revealed that the degradation rate of formaldehyde increased with initial concentration fitting a first-order kinetics reaction. In contrast, the degradation rate of benzene had no relationship with initial concentration and degradation did not conform to first-order kinetics. The photo-catalytic degradation of formaldehyde-benzene mixtures indicated that formaldehyde behaved differently than when treated in its pure form. The degradation time was two times longer and the kinetics did not reflect a first-order reaction. The degradation of benzene was similar in both pure form and when mixed with formaldehyde.


2021 ◽  
Vol 297 ◽  
pp. 121983
Author(s):  
Haiyu Xu ◽  
Lei Wang ◽  
Xiaolei Ma ◽  
Yan Meng ◽  
Jingwei Huang ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 502
Author(s):  
Guihua Dong ◽  
Bing Chen ◽  
Bo Liu ◽  
Stanislav R. Stoyanov ◽  
Yiqi Cao ◽  
...  

One of the most commonly produced industrial chemicals worldwide, bisphenol A (BPA), is used as a precursor in plastics, resins, paints, and many other materials. It has been proved that BPA can cause long-term adverse effects on ecosystems and human health due to its toxicity as an endocrine disruptor. In this study, we developed an integrated MnO2/UV/persulfate (PS) process for use in BPA photocatalytic degradation from water and examined the reaction mechanisms, degradation pathways, and toxicity reduction. Comparative tests using MnO2, PS, UV, UV/MnO2, MnO2/PS, and UV/PS processes were conducted under the same conditions to investigate the mechanism of BPA catalytic degradation by the proposed MnO2/UV/PS process. The best performance was observed in the MnO2/UV/PS process in which BPA was completely removed in 30 min with a reduction rate of over 90% for total organic carbon after 2 h. This process also showed a stable removal efficiency with a large variation of pH levels (3.6 to 10.0). Kinetic analysis suggested that 1O2 and SO4•− played more critical roles than •OH for BPA degradation. Infrared spectra showed that UV irradiation could stimulate the generation of –OH groups on the MnO2 photocatalyst surface, facilitating the PS catalytic degradation of BPA in this process. The degradation pathways were further proposed in five steps, and thirteen intermediates were identified by gas chromatography-mass spectrometry. The acute toxicity was analyzed during the treatment, showing a slight increase (by 3.3%) in the first 30 min and then a decrease by four-fold over 2 h. These findings help elucidate the mechanism and pathways of BPA degradation and provide an effective PS catalytic strategy.


Sign in / Sign up

Export Citation Format

Share Document