The role of Th22 cells, from tissue repair to cancer progression

Cytokine ◽  
2022 ◽  
Vol 149 ◽  
pp. 155749
Author(s):  
Hassan Doulabi ◽  
Elham Masoumi ◽  
Maryam Rastin ◽  
Afsaneh Foolady Azarnaminy ◽  
Seyed-Alireza Esmaeili ◽  
...  
Author(s):  
Amina Mohammadalipour ◽  
Sandeep P. Dumbali ◽  
Pamela L. Wenzel

Mesenchymal stromal cell (MSC) metabolism plays a crucial role in the surrounding microenvironment in both normal physiology and pathological conditions. While MSCs predominantly utilize glycolysis in their native hypoxic niche within the bone marrow, new evidence reveals the importance of upregulation in mitochondrial activity in MSC function and differentiation. Mitochondria and mitochondrial regulators such as sirtuins play key roles in MSC homeostasis and differentiation into mature lineages of the bone and hematopoietic niche, including osteoblasts and adipocytes. The metabolic state of MSCs represents a fine balance between the intrinsic needs of the cellular state and constraints imposed by extrinsic conditions. In the context of injury and inflammation, MSCs respond to reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs), such as damaged mitochondria and mitochondrial products, by donation of their mitochondria to injured cells. Through intercellular mitochondria trafficking, modulation of ROS, and modification of nutrient utilization, endogenous MSCs and MSC therapies are believed to exert protective effects by regulation of cellular metabolism in injured tissues. Similarly, these same mechanisms can be hijacked in malignancy whereby transfer of mitochondria and/or mitochondrial DNA (mtDNA) to cancer cells increases mitochondrial content and enhances oxidative phosphorylation (OXPHOS) to favor proliferation and invasion. The role of MSCs in tumor initiation, growth, and resistance to treatment is debated, but their ability to modify cancer cell metabolism and the metabolic environment suggests that MSCs are centrally poised to alter malignancy. In this review, we describe emerging evidence for adaptations in MSC bioenergetics that orchestrate developmental fate decisions and contribute to cancer progression. We discuss evidence and potential strategies for therapeutic targeting of MSC mitochondria in regenerative medicine and tissue repair. Lastly, we highlight recent progress in understanding the contribution of MSCs to metabolic reprogramming of malignancies and how these alterations can promote immunosuppression and chemoresistance. Better understanding the role of metabolic reprogramming by MSCs in tissue repair and cancer progression promises to broaden treatment options in regenerative medicine and clinical oncology.


2018 ◽  
Vol 46 (5) ◽  
pp. 1129-1136 ◽  
Author(s):  
Sai V. Chitti ◽  
Pamali Fonseka ◽  
Suresh Mathivanan

Cancer cachexia is a multifactorial metabolic syndrome characterized by the rapid loss of skeletal muscle mass with or without the loss of fat mass. Nearly 50–80% of all cancer patients' experience rapid weight loss results in ∼20% of cancer-related deaths. The levels of pro-inflammatory and pro-cachectic factors were significantly up-regulated in cachexia patients when compared with the patients who were without cachexia. It is becoming evident that these factors work synergistically to induce cancer cachexia. Extracellular vesicles (EVs) including exosomes and microvesicles are implicated in cell–cell communication, immune response, tissue repair, epigenetic regulation, and in various diseases including cancer. It has been reported that these EVs regulate cancer progression, metastasis, organotropism and chemoresistance. In recent times, the role of EVs in regulating cancer cachexia is beginning to unravel. The aim of this mini article is to review the recent knowledge gained in the field of EVs and cancer cachexia. Specifically, the role of tumour cell-derived EVs in promoting catabolism in distally located skeletal muscles and adipose tissue will be discussed.


2020 ◽  
Vol 13 (648) ◽  
pp. eaay8690
Author(s):  
Lucy MacCarthy-Morrogh ◽  
Paul Martin

The Hanahan and Weinberg “hallmarks of cancer” papers provide a useful structure for considering the various mechanisms driving cancer progression, and the same might be useful for wound healing. In this Review, we highlight how tissue repair and cancer share cellular and molecular processes that are regulated in a wound but misregulated in cancer. From sustained proliferative signaling and the activation of invasion and angiogenesis to the promoting role of inflammation, there are many obvious parallels through which one process can inform the other. For some hallmarks, the parallels are more obscure. We propose some new prospective hallmarks that might apply to both cancer and wound healing and discuss how wounding, as in biopsy and surgery, might positively or negatively influence cancer in the clinic.


Sign in / Sign up

Export Citation Format

Share Document