scholarly journals Peripheral immune cells in NAFLD patients: A spyhole to disease progression

EBioMedicine ◽  
2022 ◽  
Vol 75 ◽  
pp. 103768
Author(s):  
Shuang-Zhe Lin ◽  
Jian-Gao Fan
Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
Denise Utami Putri ◽  
Cheng-Hui Wang ◽  
Po-Chun Tseng ◽  
Wen-Sen Lee ◽  
Fu-Lun Chen ◽  
...  

The heterogeneity of immune response to COVID-19 has been reported to correlate with disease severity and prognosis. While so, how the immune response progress along the period of viral RNA-shedding (VRS), which determines the infectiousness of disease, is yet to be elucidated. We aim to exhaustively evaluate the peripheral immune cells to expose the interplay of the immune system in uncomplicated COVID-19 cases with different VRS periods and dynamic changes of the immune cell profile in the prolonged cases. We prospectively recruited four uncomplicated COVID-19 patients and four healthy controls (HCs) and evaluated the immune cell profile throughout the disease course. Peripheral blood mononuclear cells (PBMCs) were collected and submitted to a multi-panel flowcytometric assay. CD19+-B cells were upregulated, while CD4, CD8, and NK cells were downregulated in prolonged VRS patients. Additionally, the pro-inflammatory-Th1 population showed downregulation, followed by improvement along the disease course, while the immunoregulatory cells showed upregulation with subsequent decline. COVID-19 patients with longer VRS expressed an immune profile comparable to those with severe disease, although they remained clinically stable. Further studies of immune signature in a larger cohort are warranted.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 730
Author(s):  
Moritz Peiseler ◽  
Frank Tacke

Nonalcoholic fatty liver disease (NAFLD) is a rising chronic liver disease and comprises a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) to end-stage cirrhosis and risk of hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is multifactorial, but inflammation is considered the key element of disease progression. The liver harbors an abundance of resident immune cells, that in concert with recruited immune cells, orchestrate steatohepatitis. While inflammatory processes drive fibrosis and disease progression in NASH, fueling the ground for HCC development, immunity also exerts antitumor activities. Furthermore, immunotherapy is a promising new treatment of HCC, warranting a more detailed understanding of inflammatory mechanisms underlying the progression of NASH and transition to HCC. Novel methodologies such as single-cell sequencing, genetic fate mapping, and intravital microscopy have unraveled complex mechanisms behind immune-mediated liver injury. In this review, we highlight some of the emerging paradigms, including macrophage heterogeneity, contributions of nonclassical immune cells, the role of the adaptive immune system, interorgan crosstalk with adipose tissue and gut microbiota. Furthermore, we summarize recent advances in preclinical and clinical studies aimed at modulating the inflammatory cascade and discuss how these novel therapeutic avenues may help in preventing or combating NAFLD-associated HCC.


PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102550 ◽  
Author(s):  
Boryana Stamova ◽  
Glen C. Jickling ◽  
Bradley P. Ander ◽  
Xinhua Zhan ◽  
DaZhi Liu ◽  
...  

2013 ◽  
Vol 144 (5) ◽  
pp. S-819
Author(s):  
Jennifer H. Cox ◽  
Evan Thomas ◽  
Rebecca P. Wu ◽  
Kem Valliant-Saunders ◽  
Scott Hussell ◽  
...  

2018 ◽  
Vol 67 ◽  
pp. 299-307 ◽  
Author(s):  
K.A. Jones ◽  
S. Maltby ◽  
M.W. Plank ◽  
M. Kluge ◽  
M. Nilsson ◽  
...  

2019 ◽  
Vol 20 (2) ◽  
pp. 377 ◽  
Author(s):  
Giulia Franzolin ◽  
Luca Tamagnone

The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.


Author(s):  
Xiao-Lan Wang ◽  
Lianjian Li

The circadian clock regulates numerous key physiological processes and maintains cellular, tissue, and systemic homeostasis. Disruption of circadian clock machinery influences key activities involved in immune response and brain function. Moreover, Immune activation has been closely linked to neurodegeneration. Here, we review the molecular clock machinery and the diurnal variation of immune activity. We summarize the circadian control of immunity in both central and peripheral immune cells, as well as the circadian regulation of brain cells that are implicated in neurodegeneration. We explore the important role of systemic inflammation on neurodegeneration. The circadian clock modulates cellular metabolism, which could be a mechanism underlying circadian control. We also discuss the circadian interventions implicated in inflammation and neurodegeneration. Targeting circadian clocks could be a potential strategy for the prevention and treatment of inflammation and neurodegenerative diseases.


2022 ◽  
Vol 15 ◽  
Author(s):  
Nynke J. van den Hoogen ◽  
Erika K. Harding ◽  
Chloé E. D. Davidson ◽  
Tuan Trang

Chronic pain is a complex sensory, cognitive, and emotional experience that imposes a great personal, psychological, and socioeconomic burden on patients. An estimated 1.5 billion people worldwide are afflicted with chronic pain, which is often difficult to treat and may be resistant to the potent pain-relieving effects of opioid analgesics. Attention has therefore focused on advancing new pain therapies directed at the cannabinoid system because of its key role in pain modulation. Endocannabinoids and exogenous cannabinoids exert their actions primarily through Gi/o-protein coupled cannabinoid CB1 and CB2 receptors expressed throughout the nervous system. CB1 receptors are found at key nodes along the pain pathway and their activity gates both the sensory and affective components of pain. CB2 receptors are typically expressed at low levels on microglia, astrocytes, and peripheral immune cells. In chronic pain states, there is a marked increase in CB2 expression which modulates the activity of these central and peripheral immune cells with important consequences for the surrounding pain circuitry. Growing evidence indicate that interventions targeting CB1 or CB2 receptors improve pain outcomes in a variety of preclinical pain models. In this mini-review, we will highlight recent advances in understanding how cannabinoids modulate microglia function and its implications for cannabinoid-mediated analgesia, focusing on microglia-neuron interactions within the spinal nociceptive circuitry.


Sign in / Sign up

Export Citation Format

Share Document