scholarly journals Lab scale-study on the efficiency and distribution of energy consumption in chromium contaminated aquifer electrokinetic remediation

Author(s):  
Huichao Xu ◽  
Jing Bai ◽  
Xinru Yang ◽  
Chunpeng Zhang ◽  
Meng Yao ◽  
...  
2000 ◽  
Vol 42 (7-8) ◽  
pp. 335-343 ◽  
Author(s):  
S. Shiba ◽  
S. Hino ◽  
Y. Hirata ◽  
T. Seno

The operational variables of electrokinetic remediation have not been cleared yet, because this method is relatively new and is an innovative technique in the aquifer remediation. In order to investigate the operational variables of the electrokinetic remediation, a mathematical model has been constructed based on the physico chemical mass transport process of heavy metals in pore water of contaminated aquifer. The transport of the heavy metals is driven not only by the hydraulic flow due to the injection of the purge water but also by the electromigration due to the application of the electric potential gradient. The electric potential between anode and cathode is the important operational variable for the electrokinetic remediation. From the numerical simulations with use of this model it is confirmed that the remediation starts from the up stream anode and gradually the heavy metal is transported to the down stream cathode and drawn out through the purge water.


Author(s):  
Claudio Cameselle ◽  
Susana Gouveia ◽  
Adrian Cabo

Electrokinetic remediation is a useful technique for the removal of ionic contaminants in soils, sediments, sludges, and other solid porous matrixes. The efficiency of metal removal and the electricity consumption in the electrokinetic treatment of soils largely depend on electric and physicochemical conditions. This study analyzes the electrokinetic treatment of Mn contaminated kaolinite clay specimen and the influence of voltage, current intensity, moisture content, pH, and facilitating agents on metal removal and energy consumption. The objective of this study is to identify the influence of the typical variables used in electrokinetic remediation. The results showed that the operation at constant voltage or constant current intensity were equivalent in terms of metal removal and energy consumption, as long as the electric field intensity was kept low to minimize the consumption in parallel electrochemical reactions, especially the electrolysis of water. The moisture content had a significant influence on the Mn removal. Moisture content higher that 50 percent resulted in very effective Mn removal as compared with kaolinite specimens with lower moisture. The control of pH in the electrolyte solutions and the addition of facilitating agents (organic acids) enhanced the removal of Mn but increased the electric energy cost. Overall, the best conditions for Mn removal involved low to moderate electric potential difference (10 to 30 V), the use of citric acid as the facilitating agent, and the pH control in the cathode at a slightly acid pH. The electrokinetic treatment of a sludge from a water treatment plant contaminated with Mn was effective when pH control on the cathode was used. Mn and various metals (66% of Mn, 30% of Cu, 56% of Zn, 21% Sr, and 21% of Fe) were removed with moderate electricity and acid consumption.


2020 ◽  
Vol 980 ◽  
pp. 502-511
Author(s):  
Yu Shan Wan ◽  
Ju An Zhai ◽  
An Wei Wang

In view of the problems of long remediation time, high energy consumption and low remediation efficiency in electrokinetic remediation of heavy metal contaminated soil, Cd was used to simulate heavy metals in contaminated soil, and response surface method (RSM) was used to optimize the factors influencing electrokinetic remediation. Central Composite (CCD) experimental design method was taken to study the effects of electric field strength, remediation time and water content on removal rate of Cd in soil. Also, polynomial regression mathematical model and optimal reaction conditions were provided for Cd pollution in electrokinetic soil remediation. The simulated equation F was 15.67, the correlation coefficient was 0.9338, and the adjustment correlation coefficient was 0.9042, indicating good regression and strong significance of the equation. The model results showed that, for the optimal experimental conditions, electric field strength was 2.25V·cm-1, the remediation time was 120.79h, and the water content was 17.06%. On the basis of such reaction condition, intermittent current flow method was adopted d to further enhance the electrokinetic remediation effect. The cadmium removal rate in the soil was increased by 3.17%, 2.86% and 2.43%, respectively, and the electric energy consumption was decreased by 10.54%, 11.28% and 9.97%, respectively, suggesting that the method could effectively improve the removal rate of Cd and reduce energy consumption.


2017 ◽  
Vol 235 ◽  
pp. 604-612 ◽  
Author(s):  
Lizhu Yuan ◽  
Xingjian Xu ◽  
Haiyan Li ◽  
Quanying Wang ◽  
Nana Wang ◽  
...  

Author(s):  
Shahzeen Z. Attari ◽  
Michael L. DeKay ◽  
Cliff I. Davidson ◽  
Wandi Bruine de Bruin

ICCTP 2009 ◽  
2009 ◽  
Author(s):  
Shunquan Huang ◽  
Siqin Yu ◽  
Zhongmin Liu

2020 ◽  
Vol 39 (4) ◽  
pp. 5449-5458
Author(s):  
A. Arokiaraj Jovith ◽  
S.V. Kasmir Raja ◽  
A. Razia Sulthana

Interference in Wireless Sensor Network (WSN) predominantly affects the performance of the WSN. Energy consumption in WSN is one of the greatest concerns in the current generation. This work presents an approach for interference measurement and interference mitigation in point to point network. The nodes are distributed in the network and interference is measured by grouping the nodes in the region of a specific diameter. Hence this approach is scalable and isextended to large scale WSN. Interference is measured in two stages. In the first stage, interference is overcome by allocating time slots to the node stations in Time Division Multiple Access (TDMA) fashion. The node area is split into larger regions and smaller regions. The time slots are allocated to smaller regions in TDMA fashion. A TDMA based time slot allocation algorithm is proposed in this paper to enable reuse of timeslots with minimal interference between smaller regions. In the second stage, the network density and control parameter is introduced to reduce interference in a minor level within smaller node regions. The algorithm issimulated and the system is tested with varying control parameter. The node-level interference and the energy dissipation at nodes are captured by varying the node density of the network. The results indicate that the proposed approach measures the interference and mitigates with minimal energy consumption at nodes and with less overhead transmission.


Sign in / Sign up

Export Citation Format

Share Document