Experimental investigation of relative velocity field based on image rotation method in pump impeller

2021 ◽  
Vol 82 ◽  
pp. 102061
Author(s):  
Xiao-Dong Liu ◽  
Zhu-Qing Liu ◽  
Qiang Zhong ◽  
Yao-jun Li ◽  
Wei Yang
2018 ◽  
Vol 180 ◽  
pp. 02026
Author(s):  
Filipský Jakub

The Multipoint Ultrasonic Flowmeter is a vector tomographic device capable of reconstructing all three components of velocity field based solely on boundary ultrasonic measurements. Computer simulations have shown the feasibility of such a device and have been published previously. This paper describes an experimental investigation of achievable accuracy of such a method. Doubled acoustic tripoles used to obtain information of the solenoidal part of vector field show extremely short differences between the Time Of Flights (TOFs) of individual sensors and are therefore sensitive to parasitic effects of TOF measurements. Sampling at 40MHz and correlation method is used to measure the TOF.


Author(s):  
Oliver Munz ◽  
Lisa Hühn ◽  
Corina Schwitzke ◽  
Hans-Jörg Bauer ◽  
Tim Fischer ◽  
...  

Abstract Sealing systems contribute significantly to the efficiency of turbomachinery. Small gap widths, which are important for low leakage mass flows in labyrinth seals, combined with thermal and mechanical expansion of the rotor can lead to contact with the stator. During these so-called rubbing processes, it is necessary to make an accurate prediction with respect to the performance and service life of the seal. For this purpose, the influence of relative velocity in the contact (up to 165ms−1) and incursion rate (up to 0.5 mms−1) on the resulting thermal and mechanical loads as well as wear mechanisms are studied for the rubbing process between an inclined labyrinth seal fin and a honeycomb segment. Furthermore, different axial configurations of the seal fin with respect to the honeycomb structure are considered. The system reacts very sensitively to a change of the seal fin position relative to the honeycomb structure. The incursion per revolution reflects a change of the wear mechanism from abrasive to plastic for a certain value. The results of this study contribute to the optimization of labyrinth seals and the development of new types of liner materials as well as geometries.


2013 ◽  
Vol 706-708 ◽  
pp. 609-612
Author(s):  
Guo Dong Wu ◽  
Qiang Liu ◽  
Yong Jie Xu ◽  
Zhi Jun Wang

With the purpose of reducing cost, improving the operability, and ensuring the safety, a low-speed testing system of the encounter of fuse and target was carried out. When the system working, the relative velocity of the target and fuse is in control in less than 10m/s, which is a shrink ratio of the real encounter. Experimental investigation shows that the low-speed encountering system can reach the requirements of Doppler radio fuse in the early design, which can help designers design a better fuse.


1999 ◽  
Vol 183 ◽  
pp. 265-265
Author(s):  
Naoki Seto ◽  
Jun'ichi Yokoyama

It has been a long-standing cosmological issue to explain why the statistical distribution of the radial pairwise peculiar velocity of galaxies has an exponential shape rather than the Gaussian, as suggested by observations and explicitly shown by results of N-body simulations. Previous explanations on the exponential distribution are based on highly nonlinear dynamics of galactic systems (R < 1h–1 Mpc). That is, the exponential feature appears as a result of superposition of Gaussian velocity distributions in clumps with various velocity dispersions. Hence although this model is suitable to account for a symmetric exponential distribution with vanishing mean net relative velocity, a more elaborate treatment is necessary in order to reproduce an asymmetric exponential distribution with its peak at a negative relative velocity as observed in numerical simulations.


2011 ◽  
Vol 683 ◽  
pp. 94-111 ◽  
Author(s):  
Quan Zhou ◽  
Chun-Mei Li ◽  
Zhi-Ming Lu ◽  
Yu-Lu Liu

AbstractWe report an experimental investigation of the longitudinal space–time cross-correlation function of the velocity field, $C(r, \tau )$, in a cylindrical turbulent Rayleigh–Bénard convection cell using the particle image velocimetry (PIV) technique. We show that while Taylor’s frozen-flow hypothesis does not hold in turbulent thermal convection, the recent elliptic model advanced for turbulent shear flows (He & Zhang, Phys. Rev. E, vol. 73, 055303) is valid for the present velocity field for all over the cell, i.e. the isocorrelation contours of the measured $C(r, \tau )$ have an elliptical curve shape and hence $C(r, \tau )$ can be related to $C({r}_{E} , 0)$ via ${ r}_{E}^{2} = (r\ensuremath{-} U\tau )^{2} + {V}^{2} {\tau }^{2} $ with $U$ and $V$ being two characteristic velocities. We further show that the fitted $U$ is proportional to the mean velocity of the flow, but the values of $V$ are larger than the theoretical predictions. Specifically, we focus on two representative regions in the cell: the region near the cell sidewall and the cell’s central region. It is found that $U$ and $V$ are approximately the same near the sidewall, while $U\simeq 0$ at the cell centre.


2007 ◽  
Vol 04 (05) ◽  
pp. 739-749 ◽  
Author(s):  
ZBIGNIEW OZIEWICZ

In 1908, Minkowski [13] used space-like binary velocity-field of a medium, relative to an observer. In 1974, Hestenes introduced, within a Clifford algebra, an axiomatic binary relative velocity as a Minkowski bivector [7, 8]. We propose to consider binary relative velocity as a traceless nilpotent endomorphism in an operator algebra. Any concept of a binary axiomatic relative velocity made possible the replacement of the Lorentz relativity group by the relativity groupoid. The relativity groupoid is a category of massive bodies in mutual relative motions, where a binary relative velocity is interpreted as a categorical morphism with the associative addition. This associative addition is to be contrasted with non-associative addition of (ternary) relative velocities in isometric special relativity (loop structure). We consider an algebra of many time-plus-space splits, as an operator algebra generated by idempotents. The kinematics of relativity groupoid is ruled by associative Frobenius operator algebra, whereas the dynamics of categorical relativity needs the non-associative Frölicher–Richardson operator algebra. The Lorentz covariance is the cornerstone of physical theory. Observer-dependence within relativity groupoid, and the Lorentz-covariance within the Lorentz relativity group, are different concepts. Laws of Physics could be observer-free, rather than Lorentz-invariant.


1999 ◽  
Vol 121 (4) ◽  
pp. 813-823 ◽  
Author(s):  
Nicholas H. Hesse ◽  
J. H. G. Howard

Laser-Doppler Anemometry (LDA) was used to study the effect of blade loading on the relative velocity field in a rotating passage of a centrifugal-pump impeller. Two variations of the impeller, 8-bladed and 16-bladed, were investigated. The measured primary and secondary velocities and turbulence show that the effect of blade loading is not that previously predicted. The 16-blade impeller with high blade loading has a rapidly thickening suction side boundary layer, suggesting the onset of transient separation near the exit. However, for the 8-blade impeller with even higher blade loading, the onset of separation is not indicated at any measured location in the impeller. At the design flow, it is concluded that the stronger potential eddy and lower solidity associated with the very high blade loading caused a change in the secondary flow pattern, retarding the growth and the likelihood of transitory separation of the suction side boundary layer.


Sign in / Sign up

Export Citation Format

Share Document