Impact of the particle-polymer interface on small- and large-scale deformation response in protein- and carbohydrate-based food matrices

Author(s):  
Silvia Brandner ◽  
Thomas Becker ◽  
Mario Jekle
2020 ◽  
pp. 1-12
Author(s):  
S.L. Gibellato ◽  
L.F. Dalsóquio ◽  
I.C.A. do Nascimento ◽  
T.M. Alvarez

Mycotoxins are secondary metabolites produced by filamentous fungi that colonise various crops around the world and cause major damage to the agro-industrial sector on a global scale. Considering the estimative of population growth in the next decades, it is of fundamental importance the implementation of practices that help prevent the economics and social impacts of aflatoxin contamination. Even though various approaches have been developed – including physical, chemical and biological approaches – there is not yet one that strikes a balance in terms of safety, food quality and cost, especially when considering large scale application. In this review, we present a compilation of advantages and disadvantages of different strategies for prevention and reduction of aflatoxin contamination. Biological approaches represent the trend in innovations mainly due to their specificity and versatility, since it is possible to consider the utilisation of whole microorganisms, culture supernatants, purified enzymes or even genetic engineering. However, challenges related to improvement of the efficiency of such methods and ensuring safety of treated foods still need to be overcome.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Stefan J. Eder ◽  
Philipp G. Grützmacher ◽  
Manel Rodríguez Ripoll ◽  
Daniele Dini ◽  
Carsten Gachot

The microstructural evolution in the near-surface regions of a dry sliding interface has considerable influence on its tribological behavior and is driven mainly by mechanical energy and heat. In this work, we use large-scale molecular dynamics simulations to study the effect of temperature on the deformation response of FCC CuNi alloys of several compositions under various normal pressures. The microstructural evolution below the surface, marked by mechanisms spanning grain refinement, grain coarsening, twinning, and shear layer formation, is discussed in depth. The observed results are complemented by a rigorous analysis of the dislocation activity near the sliding interface. Moreover, we define key quantities corresponding to deformation mechanisms and analyze the time-independent differences between 300 K and 600 K for all simulated compositions and normal pressures. Raising the Ni content or reducing the temperature increases the energy barrier to activate dislocation activity or promote plasticity overall, thus increasing the threshold stress required for the transition to the next deformation regime. Repeated distillation of our quantitative analysis and successive elimination of spatial and time dimensions from the data allows us to produce a 3D map of the dominating deformation mechanism regimes for CuNi alloys as a function of composition, normal pressure, and homologous temperature.


2020 ◽  
pp. 109963622093556 ◽  
Author(s):  
Ganchao Chen ◽  
Yuansheng Cheng ◽  
Pan Zhang ◽  
Jun Liu ◽  
Changhai Chen ◽  
...  

In the present study, a 2D-based large-scale metallic auxetic double arrowhead honeycomb core sandwich panel (DAHSP) was proposed and its deformation response, energy dissipation characteristics and associated mechanisms under air blasts were investigated using a validated numerical model. It aims at the performance improvement of DAHSPs through the design of core relative density with respect to different strategies. The DAHSPs considered mainly experienced a local dome superimposed upon global deformation of front face and global deformation of back face, while the core webs were heavily buckled and progressively collapsed. The results confirmed the material concentration effect of DAH cores induced by the negative Poisson’s ratio (NPR). It was found that the panel deformation response was highly related to their deformation/failure mechanisms. Relative to core web thickness, the increase of number of core layers led to a more remarkable decrease in permanent deflections. However, the decline of inclined angles not always reduced the back face deflection due to the competition between enhanced bending stiffness and deteriorated local contact force. An ideal means to decrease the panel deformation is to enlarge the inclined angles at low relative density but to decrease the horizontal distance when the relative density increases to a high level. The panel with thinner core webs at low relative density and the panel with narrowed inclined angles at high relative density is more beneficial to plastic energy absorption. In addition, a core configuration with a thinner tendon but a thicker stuffer promoted the exploitation of NPR and further improved the panel energy absorption.


1990 ◽  
Vol 17 (5) ◽  
pp. 686-697 ◽  
Author(s):  
F. J. Vecchio ◽  
K. Tang

The formation and influence of compressive membrane action in reinforced concrete slabs is discussed. An experimental program is described, in which two large-scale slab specimens were tested under concentrated midspan loads. One slab was restrained against lateral expansion at the ends, while the other was free to elongate. The laterally restrained specimen developed high axial compressive forces, which resulted in a significant increase in flexural stiffness and load capacity. A nonlinear analysis procedure was used to model specimen behaviour. The analysis method was found to adequately represent important second-order effects, and thus gave reasonably accurate predictions of load–deformation response and ultimate load. Key words: analysis, concrete, deformation, load, membrane, reinforced, slabs, strength, tests.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Sign in / Sign up

Export Citation Format

Share Document