Changes of the condylar cartilage and subchondral bone in the temporomandibular joints of rats under unilateral mastication and expression of Insulin-like Growth Factor-1

Author(s):  
Ziyang Liu ◽  
Yali Hou ◽  
Pengfei Zhang ◽  
Haiyan Lu ◽  
Wen Wang ◽  
...  
2008 ◽  
Vol 87 (2) ◽  
pp. 159-163 ◽  
Author(s):  
T. Yokota ◽  
H. Shimokawa ◽  
S. Shibata ◽  
K. Itoh ◽  
Y. Baba ◽  
...  

Endogenous insulin-like growth factor-I (IGF-I) is known to affect the growth and development of condylar cartilage. However, the critical effect of IGF-I on cell survival is still unknown. We hypothesized that endogenous IGF-I could regulate the survival of cells of the mandibular condylar cartilage. Mandibular condyles dissected from 12-day-old rats were cultured for 1, 3, and 5 days in medium containing antisense oligodeoxynucleotide (AS-ODN) for IGF-I. Real-time RT-PCR analysis showed that the levels of IGF-I and IGF binding protein (IGFBP)3 mRNAs in the AS-ODN group were significantly decreased. After 3 days’ culture, the number of necrotic cells was observed in the undifferentiated mesenchymal cell layer. These cells were TUNEL-positive and confirmed to be apoptotic by electron microscopic observation. Immunoblotting revealed that expression of cleaved caspase3 was increased with AS-ODN. These results may suggest that the cells in the undifferentiated mesenchymal cell layer of the mandibular condyle require IGF-I for survival.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuejiao Zhang ◽  
Xiaojie Xu ◽  
Peng Zhou ◽  
Qian Liu ◽  
Mian Zhang ◽  
...  

Temporomandibular joints (TMJs) have a biomechanical relationship with dental occlusion. Aberrant occlusion initiates degenerative remodeling responses in TMJ condyles. Aging is a promoting factor of osteoarthritis (OA) development. The aim of this study was to assess the effect of aging on degenerative remodeling in TMJ condyles in response to occlusal biomechanical stimulation caused by the installation of aberrant prostheses and observe rehabilitation after their removal. The experiments involved 84 female C57BL/6J mice (42 at 6 weeks old and 42 at 28 weeks old). A bilateral anterior crossbite (BAC) model was developed, and the TMJs were sampled at 3, 7, and 11 weeks. BAC was removed at 7 weeks in a subset of mice, which accepted BAC treatment at 6 week of age, and maintained for another 4 weeks after BAC removal. TMJ changes were assessed with micro-CT, histomorphology, immunohistochemistry (IHC), and immunofluorescence staining assays. The results showed that BAC induced typical OA-like TMJ lesions that were more severe in the elder groups as evaluated by the acellular zones, clustered chondrocytes, fissures between cartilage and subchondral bone, reductions in matrix amount and the cartilage thickness as revealed by histomorphological measurements, and subchondral bone loss as detected on micro-CT images. IHC indicated significant increases in cleaved caspase-3-expressing cells and decreases in ki67-positive cells in the BAC groups. There were obvious age-dependent changes in the numbers of superficial zone cells and CD90-expressing cells. Supportively, cleaved caspase-3-expressing cells obviously increased, while ki67-expressing cells significantly decreased with aging. In the elder BAC groups, the superficial zone cells such as CD90-expressing cells were greatly reduced. At 11 weeks, the superficial zone cells were almost non-existent, and there were clear serrated injuries on the cartilage surface. BAC removal attenuated the degenerative changes in the condylar cartilage and subchondral bone. Notably, the rescue effect was more pronounced in the younger animals. Our findings demonstrate the impacts of aging on both TMJ degenerative changes in response to BAC and regenerative changes following BAC removal. The reduced number of chondro-progenitor cells in aged TMJ cartilage provides an explanation for this age-related decline in TMJ rehabilitative behaviors.


2004 ◽  
Vol 83 (3) ◽  
pp. 245-249 ◽  
Author(s):  
J. Watahiki ◽  
T. Yamaguchi ◽  
T. Irie ◽  
H. Nakano ◽  
K. Maki ◽  
...  

Little is known about the mechanisms of mandibular condylar growth. In this study, gene expression in the mandibular condylar cartilage of young post-natal mice was monitored by means of a cDNA microarray, real-time PCR, and laser microdissection before and after the initiation of mastication (newborn, 7 days, 21 days, initiation of mastication, and 35 days). Insulin-like growth factor-1 (IGF-I), transforming-growth-factor-beta-2 (TGFbeta2), and aggrecan mRNAs were clearly expressed at 21 days, while the expression of osteopontin mRNAs was most clear at 35 days. Parathyroid-hormone-related protein (PTHrP), Indian-hedgehog (Ihh), and insulin-like growth factor-2 (IGF-2) mRNAs were clearly expressed during lactation (newborn and 7 days). Heat-shock-protein 84 (HSP-84) and heat-shock-protein 86 (HSP-86) were clearly expressed at 35 days. These results revealed that gene expression changed during mandibular condylar cartilage growth, and that, interestingly, these changes coincided with the initiation of mastication.


Bone ◽  
2006 ◽  
Vol 38 (3) ◽  
pp. 333-341 ◽  
Author(s):  
Frédéric Massicotte ◽  
Julio Cesar Fernandes ◽  
Johanne Martel-Pelletier ◽  
Jean-Pierre Pelletier ◽  
Daniel Lajeunesse

Sign in / Sign up

Export Citation Format

Share Document