Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains

2015 ◽  
Vol 117 ◽  
pp. 41-57 ◽  
Author(s):  
Jennifer Ebner ◽  
Ayşe Aşçı Arslan ◽  
Maria Fedorova ◽  
Ralf Hoffmann ◽  
Ahmet Küçükçetin ◽  
...  
Keyword(s):  
Author(s):  
Afsaneh Salari ◽  
Mohammad Hashemi ◽  
Asma Afshari

: Kefir is produced through the fermentation of milk using kefir grain as a starter culture. Kefir grains include heterogeneous microorganisms embedded in a polysaccharide matrix called kefiran which is considered a biofilm, it also has many uses due to its therapeutic values. Kefiran is a microbial exopolysaccharide (EPS) obtained from the flora (acid- lactic bacteria and yeasts) of kefir grains and glucose units, in almost the same proportion. Kefiran has prebiotic nature agitating the growth of probiotics in the gastrointestinal tract of the human entity. It extends certain therapeutic benefits through balancing the microbiota in the intestine. This review presents the most recent advances regarding kefir and kefiran, their cultural condition, biological activities, and potential applications in the health and food industries.


2018 ◽  
Vol 6 (4) ◽  
pp. 121 ◽  
Author(s):  
Ioanna Mantzourani ◽  
Antonia Terpou ◽  
Athanasios Alexopoulos ◽  
Pelagia Chondrou ◽  
Alex Galanis ◽  
...  

In the present study 38 lactic acid bacteria strains were isolated from kefir grains and were monitored regarding probiotic properties in a series of established in vitro tests, including resistance to low pH, resistance to pepsin and pancreatin, and tolerance to bile salts, as well as susceptibility against common antibiotics. Among them, the strain SP3 displayed potential probiotic properties. Multiplex PCR analysis indicated that the novel strain belongs to the paracasei species. Likewise, the novel strain (Lactobacillus paracasei SP3) was applied as a starter culture for Feta-type cheese production. Feta-type cheese production resulted in significantly higher acidity; lower pH; reduced counts of coliforms, yeasts and fungi; and improved quality characteristics compared with cheese samples produced with no starter culture. Finally, it is highlighted that the application of the novel strain led to Feta-type cheese production with improved overall quality and sensory characteristics.


2018 ◽  
Vol 8 (8) ◽  
pp. 367 ◽  
Author(s):  
Funda Davras ◽  
Zeynep Banu Guzel-Seydim ◽  
Tugba Kok Tas

Background: Natural kefir grains have a unique microbiota. The structure contains lactic acid bacteria (LAB), acetic acid bacteria and yeast in specific ratios in a polysaccharide matrix. Authentic kefir is produced by a traditional method using kefir grains cultured in milk. In contrast, starter cultures are used instead of kefir grains in the industry. The commercial kefir starter cultures used are limited and often very different from the kefir grain microbiota.  The resultant commercial “kefir” is just a fermented drink containing some probiotic microorganisms and does not possess the same microbial population or chemical and physical characteristics of authentic kefir.  The aim of this project was to determine and compare the effects on the mouse immune system of kefir produced using natural kefir grain versus commercial kefir produced by starter culture.Methods:  Kefir produced with different cultures was fed to Balb/c mice (6-8 weeks, 20-25 grams, male) by gavage for two weeks at 300 μl/day. Intestinal tissues were collected from sacrificed mice at the end of the trial.  The control group of mice (CNI group) were fed with phosphate buffered saline (PBS).  The experimental treatments were mice fed mice fed authentic kefir produced using kefir grains (KGI group) and mice fed kefir produced using starter culture (STI group). Immunoglobulin (Ig) A, Immunoglubulin G, Interleukin (IL)-4, Interleukin-10, Interleukin-12, Toll Like Receptor (TLR)-4 were analyzed immunologically in intestinal fluid samples. Results: Results indicated that IgA values were 60.87, 72.78 and 55.31 ng/mL; IgG values were 26.59, 38.90 and 29.44 ng/mL; IL-4 values were 84, 40.28 and 53.28 pg/mL; IL-10 values were 110.98, 175.91 and 134.77 pg/mL; IL-12 values were 53.90, 22.93 and 24.75 pg/mL; TLR-4 values were 0.53, 0.43 and 1.37 ng/mL, for the CNI, KGI and STI groups, respectively.Conclusion: The high probiotic content of grain kefir had the ability to modulate many immunological mechanisms.Keywords: immune system, in vivo, kefir grain, probiotic, starter kefir culture


2016 ◽  
Vol 5 (2) ◽  
pp. 110
Author(s):  
Stylianos Exarhopoulos ◽  
Kleio D. Antoniou ◽  
Stylianos N. Raphaelides ◽  
Georgia Dimitreli

<p>The effect of Sodium Caseinates (SCN) and Whey Proteins Concentrates (WPC) addition, as well as the starter culture type (kefir grains and commercial starter culture) on the viscoelastic properties of kefir samples was evaluated. The kefir samples were prepared from homogenized and pasteurized full fat bovine milk with or without the addition of SCN or WPC at 2% (w/w) concentration. According to the results, SCN increased the fermentation time of kefir samples when compared to control samples (samples without SCN or WPC addition), while WPC decreased it. The elasticity of the protein matrix was increased with SCN or WPC addition, however, the effect of SCN was more pronounced to than that of WPC. SCN contributed to the elasticity of the samples by the formation of strong as well as weak chemical bonds, while WPC participated to proteins interactions that were characterized as weak ones. The commercial starter culture resulted in lower fermentation time and increased viscoelastic properties of the kefir samples when compared to kefir grains.</p>


2010 ◽  
Vol 101 (22) ◽  
pp. 8843-8850 ◽  
Author(s):  
Karina Teixeira Magalhães ◽  
Maria Alcina Pereira ◽  
Ana Nicolau ◽  
Giuliano Dragone ◽  
Lucília Domingues ◽  
...  

2011 ◽  
Vol 46 (4) ◽  
pp. 871-878 ◽  
Author(s):  
Karina Teixeira Magalhães ◽  
Disney Ribeiro Dias ◽  
Gilberto Vinicius de Melo Pereira ◽  
José Maria Oliveira ◽  
Lucília Domingues ◽  
...  

2005 ◽  
Vol 72 (1) ◽  
pp. 125-128 ◽  
Author(s):  
R Corli Witthuhn ◽  
Annamie Cilliers ◽  
Trevor J Britz

Kefir is an acidic, mildly alcoholic dairy beverage produced by the fermentation of milk with a grain-like starter culture (Koroleva, 1988). These grains usually contain a relatively stable and specific balance of microbes that exist in a complex symbiotic relationship (Obermann & Libudzisz, 1998; Witthuhn et al. 2004). The different groups of microbes present in the grains are active at different stages of the fermentation (Koroleva, 1982). The lactococci, including Lactococcus lactis subsp. lactis, Lc. lactis subsp. cremoris and Lc. lactis subsp. diacetilactis provide rapid acid development during the first hours of the fermentation (Litopoulou-Tzanetaki & Tzanetakis, 2000). As the acidity of the milk increases it provides favourable conditions for the growth of the lactobacilli (Rea et al. 1996). The yeasts, acetic acid bacteria and the aroma-producing microbes, mainly leuconostocs, have a much slower growth rate than the lactic acid producers, resulting in the slow production of the aroma compounds and the gradual increase in the concentration of these substances in the later stages of the fermentation (Koroleva, 1982).


2002 ◽  
Vol 57 (9-10) ◽  
pp. 805-810 ◽  
Author(s):  
Ginka I. Frengova ◽  
Emilina D. Simova ◽  
Dora M. Beshkova ◽  
Zhelyasko I. Simov

A Lactobacillus delbrueckii subsp. bulgaricus HP1 strain with high exopolysaccharide activity was selected from among 40 strains of lactic acid bacteria, isolated from kefir grains. By associating the Lactobacillus delbrueckii subsp. bulgaricus HP1 strain with Streptococcus thermophilus T15, Lactococcus lactis subsp. lactis C15, Lactobacillus helveticus MP12. and Sacharomyces cerevisiae A13, a kefir starter was formed. The associated cultivation of the lactobacteria and yeast had a positive effect on the exopolysaccharide activity of Lactobacillus delbrueckii subsp. bulgaricus HP1. The maximum exopolysaccharide concentration of the starter culture exceeded the one by the Lactobacillus delbrueckii subsp. bulgaricus HP1 monoculture by approximately 1.7 times, and the time needed to reach the maximum concentration (824.3 mg exopolysacharides/l) was shortened by 6 h. The monomer composition of the exopolysaccharides from the kefir starter culture was represented by glucose and galactose in a 1.0:0.94 ratio, which proves that the polymer synthesized is kefiran.


Sign in / Sign up

Export Citation Format

Share Document