scholarly journals Analytical modeling of complex contact behavior between rock mass and lining structure

Author(s):  
Dingli Zhang ◽  
Tong Xu ◽  
Huangcheng Fang ◽  
Qian Fang ◽  
Liqiang Cao ◽  
...  
2020 ◽  
Vol 326 (2) ◽  
pp. 1199-1211
Author(s):  
Lidia Fijałkowska-Lichwa

Abstract The results based on 2-year long measurements 01 Jan. 2016–2031 Dec. 2017 have been used for discussing the influence of tunnel lining on the size of 222Rn activity concentration and the impact of the employed rock mass insulation on natural convective air exchange. In April, air movement started when the temperature was at least 7 °C lower than the mean inside. Between May and October, an increase to 9 °C above the underground temperature resulted in an increase of radon concentration. An unconstrained convection process did not start until November and it continued until the end of March. The reinforced concrete lining insulated the fractured and absorptive rock mass. The roof and the sidewall lining had little impact on air movement process.


2009 ◽  
Vol 610-613 ◽  
pp. 76-80
Author(s):  
Tai Quan Zhou ◽  
Yuan Hua

The wet sprayed concrete technique has good virtue of improving the working condition within the tunnel, fewer reflective concrete loss and higher sprayed concrete quality. The concrete mixed with polypropylene fiber could improve the concrete inner structure, the flexural strength, tensile strength and anti-penetrating ability. The application of the wet sprayed polypropylene fiber reinforced concrete in the construction of tunnel lining structure could improve the stability of tunnel rock mass. The nonlinear finite element analysis is performed on rock mass stability of the railway tunnel lining structure and the rock mass stability is analyzed both for the un-lining tunnel and the lining tunnel. The computation result shows that the rock mass plasticity zone distribution with the lining structure is fewer than that without lining structure. To measure the deformation behavior, tunnel deformation measurement sensors are installed in the railway tunnel transverse section. The measured railway tunnel deformation result also shows that the lining structure deforms little and the rockmass is in stable state.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Juntao Chen ◽  
Yang Yang ◽  
Chao Ye ◽  
Ying Yang ◽  
Ming Xiao

The mechanical behavior of lining structure of deep-embedded cylinder surge shaft with multifork tunnel is analyzed using three-dimensional nonlinear FEM. With the elastic-plastic constitutive relations of rock mass imported and the implicit bolt element and distributed concrete cracking model adopted, a computing method of complex surge shaft is presented for the simulation of underground excavations and concrete lining cracks. In order to reflect the interaction and initial gap between rock mass and concrete lining, a three-dimensional nonlinear interface element is adopted, which can take into account both the normal and tangential characteristics. By an actual engineering computation, the distortion characteristics and stress distribution rules of the dimensional multifork surge-shaft lining structure under different behavior are revealed. The results verify the rationality and feasibility of this computation model and method and provide a new idea and reference for the complex surge-shaft design and construction.


2012 ◽  
Vol 204-208 ◽  
pp. 1532-1537
Author(s):  
Li Qiao Jin ◽  
Tai Quan Zhou ◽  
Bao Hua Lv

Polypropylene fiber reinforced concrete can improve the common concrete flexibility and it is beneficial for interaction between concrete lining structure and rock mass. The use of fiber reinforced concrete with wet sprayed concrete technique can improve the concrete lining structure construction quality and improve the rock mass self-bearing capacity. The wet-sprayed fiber reinforced concrete is first introduced in Jinhuashan railway tunnel early stage lining structure within soft and weak rock mass. The design of Jinhuashan railway tunnel lining structure using fiber reinforced concrete is introduced and the requirement of material used is explained. To evaluate the lining effect using wet-sprayed fiber reinforced concrete, the online monitoring method is used to measure the rock mass pressure and the concrete lining layer stress for both the experimental tunnel sections and comparison tunnel section. The monitoring data result shows that the rock mass pressure in experimental section is even distribution with lower rock mass pressure and lower concrete lining layer stress. The value of rock mass pressure and tunnel lining layer stress in comparison tunnel section is a little higher than that in experimental tunnel section. The experimental tunnel section using fiber reinforced concrete has good lining effect.


2014 ◽  
Vol 58 ◽  
pp. 88-100 ◽  
Author(s):  
T.A. Bui ◽  
H. Wong ◽  
F. Deleruyelle ◽  
N. Dufour ◽  
C. Leo ◽  
...  

Author(s):  
Lukáš Ďuriš ◽  
Josef Aldorf ◽  
Karel Vojtasík

Abstract Design of a tunnel lining is complex task. The tunnel lining structure works in close interaction with the surrounding rock mass. The value of the load depends on geotechnical circumstances, primary lining, shape and size of opening, construction technology and as well on the temperature distribution in a lining that is determined by climatic conditions. The article deals with the temperatures in the tunnel lining that are brought about by air temperature changes in tunnel space and a constant temperature inside the rock mass. This problem is solved making use of temperature records in tunnel, on the inner and outer surface of the tunnel lining and in rock mass measured at a motorway Tunnel Klimkovice. These records are analyzed and submit to FE model of the tunnel lining so that the lining temperature state is converted for a lining stress state.


2015 ◽  
Vol 35 ◽  
pp. 132-135
Author(s):  
Matteo Fiorucci ◽  
Roberto Iannucci ◽  
Luca Lenti ◽  
Anotnella Paciello ◽  
Alberto Prestininzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document