Genomic prediction of bovine leukosis incidence in a US Holstein population

2019 ◽  
Vol 225 ◽  
pp. 73-77 ◽  
Author(s):  
E.A. Abdalla ◽  
F.B. Lopes ◽  
T.M. Byrem ◽  
K.A. Weigel ◽  
G.J.M. Rosa
BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 1171 ◽  
Author(s):  
Beatriz CD Cuyabano ◽  
Guosheng Su ◽  
Mogens S Lund

2020 ◽  
Author(s):  
Liubov Grigorevna Iaiuk
Keyword(s):  

1974 ◽  
Vol 29 (1-2) ◽  
pp. 72-75 ◽  
Author(s):  
B. Dietzschold ◽  
O.R. Kaaden ◽  
S. Ueberschaer ◽  
F. Weiland ◽  
O. C. Straub

Abstract Typical C-type oncorna virus particles as shown by electron microscopy have been purified from the supernatant of cultured lymphocytes from bovine leukosis. In the purified C-particle fraction a DNA-polymerase activity was detected. Using several synthetic RNA-or DNA-homopolymers and 70S Friend virus RNA the template response of this bovine leukosis cell particle DNA polymerase was compared with those of feline leukaemia virus DNA polymerase and DNA polymerase from normal bovine lymphocytes. The DNA polymerase detected in the viral preparation of bovine leukosis is suggested to be an oncorna-virus-specific enzyme.


2021 ◽  
Vol 245 ◽  
pp. 104421
Author(s):  
Rosiane P. Silva ◽  
Rafael Espigolan ◽  
Mariana P. Berton ◽  
Raysildo B. Lôbo ◽  
Cláudio U. Magnabosco ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Amini ◽  
Felipe Restrepo Franco ◽  
Guiping Hu ◽  
Lizhi Wang

AbstractRecent advances in genomic selection (GS) have demonstrated the importance of not only the accuracy of genomic prediction but also the intelligence of selection strategies. The look ahead selection algorithm, for example, has been found to significantly outperform the widely used truncation selection approach in terms of genetic gain, thanks to its strategy of selecting breeding parents that may not necessarily be elite themselves but have the best chance of producing elite progeny in the future. This paper presents the look ahead trace back algorithm as a new variant of the look ahead approach, which introduces several improvements to further accelerate genetic gain especially under imperfect genomic prediction. Perhaps an even more significant contribution of this paper is the design of opaque simulators for evaluating the performance of GS algorithms. These simulators are partially observable, explicitly capture both additive and non-additive genetic effects, and simulate uncertain recombination events more realistically. In contrast, most existing GS simulation settings are transparent, either explicitly or implicitly allowing the GS algorithm to exploit certain critical information that may not be possible in actual breeding programs. Comprehensive computational experiments were carried out using a maize data set to compare a variety of GS algorithms under four simulators with different levels of opacity. These results reveal how differently a same GS algorithm would interact with different simulators, suggesting the need for continued research in the design of more realistic simulators. As long as GS algorithms continue to be trained in silico rather than in planta, the best way to avoid disappointing discrepancy between their simulated and actual performances may be to make the simulator as akin to the complex and opaque nature as possible.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Eduardo Beche ◽  
Jason D. Gillman ◽  
Qijian Song ◽  
Randall Nelson ◽  
Tim Beissinger ◽  
...  

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Theo Meuwissen ◽  
Irene van den Berg ◽  
Mike Goddard

Abstract Background Whole-genome sequence (WGS) data are increasingly available on large numbers of individuals in animal and plant breeding and in human genetics through second-generation resequencing technologies, 1000 genomes projects, and large-scale genotype imputation from lower marker densities. Here, we present a computationally fast implementation of a variable selection genomic prediction method, that could handle WGS data on more than 35,000 individuals, test its accuracy for across-breed predictions and assess its quantitative trait locus (QTL) mapping precision. Methods The Monte Carlo Markov chain (MCMC) variable selection model (Bayes GC) fits simultaneously a genomic best linear unbiased prediction (GBLUP) term, i.e. a polygenic effect whose correlations are described by a genomic relationship matrix (G), and a Bayes C term, i.e. a set of single nucleotide polymorphisms (SNPs) with large effects selected by the model. Computational speed is improved by a Metropolis–Hastings sampling that directs computations to the SNPs, which are, a priori, most likely to be included into the model. Speed is also improved by running many relatively short MCMC chains. Memory requirements are reduced by storing the genotype matrix in binary form. The model was tested on a WGS dataset containing Holstein, Jersey and Australian Red cattle. The data contained 4,809,520 genotypes on 35,549 individuals together with their milk, fat and protein yields, and fat and protein percentage traits. Results The prediction accuracies of the Jersey individuals improved by 1.5% when using across-breed GBLUP compared to within-breed predictions. Using WGS instead of 600 k SNP-chip data yielded on average a 3% accuracy improvement for Australian Red cows. QTL were fine-mapped by locating the SNP with the highest posterior probability of being included in the model. Various QTL known from the literature were rediscovered, and a new SNP affecting milk production was discovered on chromosome 20 at 34.501126 Mb. Due to the high mapping precision, it was clear that many of the discovered QTL were the same across the five dairy traits. Conclusions Across-breed Bayes GC genomic prediction improved prediction accuracies compared to GBLUP. The combination of across-breed WGS data and Bayesian genomic prediction proved remarkably effective for the fine-mapping of QTL.


Sign in / Sign up

Export Citation Format

Share Document