Computing the dynamic friction coefficient and evaluation of radiation shielding performance for AISI 304 stainless steel

Author(s):  
E.A. Eid ◽  
M.M. Sadawy ◽  
A.M. Reda
2013 ◽  
Vol 477-478 ◽  
pp. 1393-1396
Author(s):  
Peng Xu ◽  
Heng Ju ◽  
Cheng Xin Lin ◽  
Chao Yu Zhou

Using laser cladding method, the coating of Fe-Mn-Si shape memory materials (SMM) was prepared on the surface of AISI 304 stainless steel. The microstructure and microhardness of SMM laser cladding coating were measured by using a metallographic microscope and a scanning electron microscope, respectively. The phase composition was determined by X-ray diffraction. The wear resistance was evaluated on a high speed reciprocating friction tester. The results show that microhardness of the SMM coating is about Hv263, higher than that of the substrate (Hv225); the SMM coating is composed of ε-martensite and γ-austenite phases; the average friction coefficient of the substrate and SMM coating is about 0.85 and 0.71; the SMM laser cladding coating is of excellent wear resistance validated by friction coefficient, worn-out appearance and wear loss.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
Rafael dos Santos Pereira ◽  
Roosevelt Droppa ◽  
Mara Cristina Lopes de Oliveira ◽  
Renato Altobelli Antunes

Sign in / Sign up

Export Citation Format

Share Document