scholarly journals An improved exact algorithm and an NP-completeness proof for sparse matrix bipartitioning

2020 ◽  
Vol 96 ◽  
pp. 102640
Author(s):  
Timon E. Knigge ◽  
Rob H. Bisseling
2021 ◽  
pp. 104858
Author(s):  
Léo Robert ◽  
Daiki Miyahara ◽  
Pascal Lafourcade ◽  
Luc Libralesso ◽  
Takaaki Mizuki

2015 ◽  
Vol 85 ◽  
pp. 79-90 ◽  
Author(s):  
Daniël M. Pelt ◽  
Rob H. Bisseling

2018 ◽  
Vol 16 (06) ◽  
pp. 1850022 ◽  
Author(s):  
Haitao Jiang ◽  
Letu Qingge ◽  
Daming Zhu ◽  
Binhai Zhu

The genomic scaffold filling problem has attracted a lot of attention recently. The problem is on filling an incomplete sequence (scaffold) [Formula: see text] into [Formula: see text], with respect to a complete reference genome [Formula: see text], such that the number of common/shared adjacencies between [Formula: see text] and [Formula: see text] is maximized. The problem is NP-complete, and admits a constant-factor approximation. However, the sequence input [Formula: see text] is not quite practical and does not fit most of the real datasets (where a scaffold is more often given as a list of contigs). In this paper, we revisit the genomic scaffold filling problem by considering this important case when a scaffold [Formula: see text] is given, the missing genes can only be inserted in between the contigs, and the objective is to maximize the number of common adjacencies between [Formula: see text] and the filled genome [Formula: see text]. For this problem, we present a simple NP-completeness proof, we then present a factor-2 approximation algorithm.


Methodology ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 89-99 ◽  
Author(s):  
Leslie Rutkowski ◽  
Yan Zhou

Abstract. Given a consistent interest in comparing achievement across sub-populations in international assessments such as TIMSS, PIRLS, and PISA, it is critical that sub-population achievement is estimated reliably and with sufficient precision. As such, we systematically examine the limitations to current estimation methods used by these programs. Using a simulation study along with empirical results from the 2007 cycle of TIMSS, we show that a combination of missing and misclassified data in the conditioning model induces biases in sub-population achievement estimates, the magnitude and degree to which can be readily explained by data quality. Importantly, estimated biases in sub-population achievement are limited to the conditioning variable with poor-quality data while other sub-population achievement estimates are unaffected. Findings are generally in line with theory on missing and error-prone covariates. The current research adds to a small body of literature that has noted some of the limitations to sub-population estimation.


Sign in / Sign up

Export Citation Format

Share Document