scholarly journals Dehydrozingerone ameliorates Lipopolysaccharide induced acute respiratory distress syndrome by inhibiting cytokine storm, oxidative stress via modulating the MAPK/NF-κB pathway

Phytomedicine ◽  
2021 ◽  
pp. 153729
Author(s):  
Satya Krishna Tirunavalli ◽  
Karthik Gourishetti ◽  
Rama Satya Sri Kotipalli ◽  
Madusudhana Kuncha ◽  
Muralidharan Kathirvel ◽  
...  
2021 ◽  
Vol 93 (1) ◽  
pp. 18-29
Author(s):  
G. H. Meftahi ◽  
◽  
Z. Bahari ◽  
Z. Jangravi ◽  
M. Iman ◽  
...  

In early December 2019, the pandemic of coronavirus disease 2019 (COVID-19) began in Wuhan City, Hubei Province, China. Since then, it has propagated rapidly and turned into a major global crisis due to the high virus spreading. Acute respiratory distress syndrome (ARDS) is considered as a defining cause of the death cases. Cytokine storm and oxidative stress are the main players of ARDS development during respiratory virus infections. In this review, we discussed molecular mechanisms of a fatal vicious circle between oxidative stress and cytokine storm during COVID-19 infection. We also described how aging can inflame the vicious circle. Keywords: acute respiratory distress syndrome (ARDS), COVID-19, cytokine storm, oxidative stress


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ji Hoon Jang ◽  
Hang Jea Jang ◽  
Hyun-Kuk Kim ◽  
Jin Han Park ◽  
Hyo-Jung Kim ◽  
...  

Abstract Background Inhalation injury from smoke or chemical products and carbon monoxide poisoning are major causes of death in burn patients from fire accidents. Respiratory tract injuries from inhalation injury and carbon monoxide poisoning can lead to acute respiratory distress syndrome and cytokine storm syndrome. In the case of acute respiratory failure needing mechanical ventilation accompanied by cytokine storm, mortality is high and immediate adequate treatment at the emergency department is very important. Case presentation This report describes a case of acute respiratory distress syndrome and cytokine storm followed by carbon monoxide poisoning in a 34-year-old Korean male patient who was in a house fire, and was successfully treated by extracorporeal membrane oxygenation and direct hemoperfusion with polymyxin B-immobilized fiber column at emergency department. Conclusions To prevent mortality in acute respiratory distress syndrome with cytokine storm from inhalation injury and to promote a better prognosis, we suggest that early implication of extracorporeal membranous oxygenation along with direct hemoperfusion with polymyxin B-immobilized fiber column even at the emergency department should be considered.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Braira Wahid ◽  
Noshaba Rani ◽  
Muhammad Idrees

Abstract After wreaking havoc on a global level with a total of 5,488,825 confirmed cases and 349,095 deaths as of May 2020, severe acute respiratory syndrome coronavirus 2 is truly living up to the expectations of a 21st-century pandemic. Since the major cause of mortality is a respiratory failure from acute respiratory distress syndrome, the only present-day management option is supportive as the transmission relies solely on human-to-human contact. Patients suffering from coronavirus disease 2019 (COVID-19) should be tested for hyper inflammation to screen those for whom immunosuppression can increases chances of survival. As more and more clinical data surfaces, it suggests patients with mild or severe cytokine storms are at greater risk of failing fatally and hence these cytokine storms should be targets for treatment in salvaging COVID-19 patients.


2020 ◽  
Vol 5 (3) ◽  
pp. 197-201 ◽  
Author(s):  
Hesam Khodadadi ◽  
Évila Lopes Salles ◽  
Abbas Jarrahi ◽  
Fairouz Chibane ◽  
Vincenzo Costigliola ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ryo Nagasawa ◽  
Yu Hara ◽  
Kota Murohashi ◽  
Ayako Aoki ◽  
Nobuaki Kobayashi ◽  
...  

Abstract Background Oxidative stress plays an important role in acute lung injury, which is associated with the development and progression of acute respiratory failure. Here, we investigated whether the degree of oxidative stress as indicated by serum heme oxygenase-1 (HO-1) is clinically useful for predicting prognosis among the patients with acute respiratory distress syndrome (ARDS) and acute exacerbation of interstitial lung disease (AE-ILD). Methods Serum HO-1 levels of newly diagnosed or untreated ARDS and AE-ILD patients were measured at diagnosis. Relationships between serum HO-1 and other clinical parameters and 1 and 3-month mortality were evaluated. Results Fifty-five patients including 22 of ARDS and 33 of AE-ILD were assessed. Serum HO-1 level at diagnosis was significantly higher in ARDS patients than AE-ILD patients (87.8 ± 60.0 ng/mL vs. 52.5 ± 36.3 ng/mL, P <  0.001). Serum HO-1 correlated with serum total bilirubin (R = 0.454, P <  0.001) and serum LDH (R = 0.500, P <  0.001). In both patients with ARDS and AE-ILDs, serum HO-1 level tended to decrease from diagnosis to 2 weeks after diagnosis, however, did not normalized. Composite parameters including serum HO-1, age, sex, and partial pressure of oxygen in arterial blood/fraction of inspired oxygen (P/F) ratio for prediction of 3-month mortality showed a higher AUC (ARDS: 0.925, AE-ILDs: 0.892) than did AUCs of a single predictor or combination of two or three predictors. Conclusion Oxidative stress assessed by serum HO-1 is persistently high among enrolled patients for 2 weeks after diagnosis. Also, serum HO-1 levels at the diagnosis combined with age, sex, and P/F ratio could be clinically useful for predicting 3-month mortality in both ARDS and AE-ILD patients.


Immunotherapy ◽  
2020 ◽  
Vol 12 (15) ◽  
pp. 1127-1132 ◽  
Author(s):  
Juan David Cala-García ◽  
Juan David Sierra-Bretón ◽  
Jorge Eduardo Cavelier-Baiz ◽  
Álvaro A Faccini-Martínez ◽  
Carlos Eduardo Pérez-Díaz

Background: Severe pneumonia and acute respiratory distress syndrome (ARDS) due to COVID-19 is a challenge for nowadays medical practice. Although there is no clarity in the principal mechanism of lung damage and ARDS development, it has been suggested that one of the main reasons of this pathology is the hyperactivation of the immune system, better known as cytokine storm syndrome. Tocilizumab has been proposed to treat COVID-19 severe cases associated to ARDS. Results & methodology: Here we present two successful cases of tocilizumab administration in two COVID-19 patients with prior administration of antiviral therapy (hydroxychloroquine, azithromycin, lopinavir and ritonavir) with adequate response and resolution of ARDS, septic shock and severe pneumonia within the first 72 h. Discussion & conclusion: This case supports the usage of tocilizumab as an effective therapy in COVID-19 associated cytokine storm syndrome. Further studies should be done in order to assess its effectiveness and security.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Dan Li ◽  
Tian Sun ◽  
Laiting Chi ◽  
Dengming Zhao ◽  
Wenzhi Li

Background. This study investigated the potential therapeutic effects of acupoint catgut embedding (ACE) at ST36 and BL13 on lipopolysaccharide- (LPS-) induced acute respiratory distress syndrome (ARDS) in rats. Materials and Methods. Male Sprague-Dawley rats were randomized into the normal saline (NS group with a sham procedure), lipopolysaccharide (LPS group with a sham procedure), and LPS plus ACE (LPS+ACE with ACE at bilateral BL13 and ST36 acupoints one day before LPS injection) groups. After intratracheal instillation of normal saline or LPS (0.5 mg/kg), all rats were subjected to mechanical ventilation for 4 h. Their blood gas was analyzed before and after lung injury, and their lung pressure-volumes were measured longitudinally. The levels of TNF-α, IL-6, IL-10, and phosphatidylcholine (PC) and total proteins (TP) in bronchial alveolar lavage fluid (BALF) were assessed. Their wet to dry lung weight ratios, histology, myeloperoxidase (MPO), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) levels were measured. Their lung aquaporin 1 (AQP1) and Occludin protein levels were analyzed. Results. LPS administration significantly decreased the ratios of PaO2/FiO2 and pressure-volumes and induced lung inflammation and injury by increased concentrations of TNF-α, IL-6, IL-10, and TP in BALF and MPO and MDA in the lung but decreased PC in BALF and SOD activity in the lungs. LPS also reduced AQP1 and Occludin protein levels in the lung of rats. In contrast, ACE significantly mitigated the LPS-induced lung injury, inflammation, and oxidative stress and preserved the AQP1 and Occludin contents in the lung of rats. Conclusions. ACE significantly improved respiratory function by mitigating inflammation and oxidative stress and preserving AQP1 and Occludin expression in the lung in a rat model of LPS-induced ARDS.


Sign in / Sign up

Export Citation Format

Share Document