A Salmonella serogroup rapid identification system for food safety based on high throughput microfluidic chip combined with recombinase aided amplification

2022 ◽  
pp. 131402
Author(s):  
Xinran Xiang ◽  
Yuting Shang ◽  
Qinghua Ye ◽  
Fan Li ◽  
Jumei Zhang ◽  
...  
2006 ◽  
Vol 11 (3) ◽  
pp. 236-246 ◽  
Author(s):  
Laurence H. Lamarcq ◽  
Bradley J. Scherer ◽  
Michael L. Phelan ◽  
Nikolai N. Kalnine ◽  
Yen H. Nguyen ◽  
...  

A method for high-throughput cloning and analysis of short hairpin RNAs (shRNAs) is described. Using this approach, 464 shRNAs against 116 different genes were screened for knockdown efficacy, enabling rapid identification of effective shRNAs against 74 genes. Statistical analysis of the effects of various criteria on the activity of the shRNAs confirmed that some of the rules thought to govern small interfering RNA (siRNA) activity also apply to shRNAs. These include moderate GC content, absence of internal hairpins, and asymmetric thermal stability. However, the authors did not find strong support for positionspecific rules. In addition, analysis of the data suggests that not all genes are equally susceptible to RNAinterference (RNAi).


2021 ◽  
Author(s):  
Ross P. Thomas ◽  
Rachel E. Heap ◽  
Francesca Zappacosta ◽  
Emma K. Grant ◽  
Peter Pogany ◽  
...  

<p>Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of <a>new medicines. Here, we report a screening platform that combines ‘direct-to-biology’ high-throughput chemistry (D2B-HTC) with photoreactive covalent fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates. Screening the HTC-PhABit library with </a>carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn<sup>2+</sup> binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design-make-test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.</p>


2015 ◽  
Vol 60 (1) ◽  
pp. 127-138
Author(s):  
Eun–Young Seo ◽  
Seunghee Cho ◽  
Jae Sun Moon ◽  
Takafumi Gotoh ◽  
Hong Gi Kim ◽  
...  

2002 ◽  
Vol 30 (4) ◽  
pp. 794-797 ◽  
Author(s):  
S. Wilson ◽  
S. Howell

The diagnostics industry is constantly under pressure to bring innovation quicker to market and so the impetus to speed up product-development cycle times becomes greater. There are a number of steps in the product-development cycle where the application of high-throughput screening can help. In the case of lateral-flow immunodiagnostics the selection of antibody reagents is paramount. In particular, rapid identification of antibody pairs that are able to ‘sandwich’ around the target antigen is required. One screen that has been applied successfully is the use of surface plasmon resonance biosensors like Biacore®. Using such a system one can evaluate over 400 antibody pairings in under 5 days. Conventional approaches to screen this number of antibody pairs would take many months. Other automated screening systems like DELFIA® can be used in processing the vast amount of tests required for clinical trials. In addition, the use of robotics to automate routine product testing can be used to shorten the product-development cycle.


2018 ◽  
Vol 84 (16) ◽  
Author(s):  
Wei Zhou ◽  
Rui Huang ◽  
Zhiguang Zhu ◽  
Yi-Heng P. Job Zhang

ABSTRACT Thermostability and specific activity of enzymes are two of the most important properties for industrial biocatalysts. Here, we developed a petri dish-based double-layer high-throughput screening (HTS) strategy for rapid identification of desired mutants of polyphosphate glucokinase (PPGK) from a thermophilic actinobacterium, Thermobifida fusca YX, with both enhanced thermostability and activity. Escherichia coli colonies representing a PPGK mutant library were grown on the first-layer Phytagel-based plates, which can remain solid for 1 h, even at heat treatment temperatures of more than 100°C. The second layer that was poured on the first layer contained agarose, substrates, glucose 6-phosphate dehydrogenase (G6PDH), the redox dye tetranitroblue tetrazolium (TNBT), and phenazine methosulfate. G6PDH was able to oxidize the product from the PPGK-catalyzed reaction and generate NADH, which can be easily examined by a TNBT-based colorimetric assay. The best mutant obtained after four rounds of directed evolution had a 7,200-fold longer half-life at 55°C, 19.8°C higher midpoint of unfolding temperature (Tm), and a nearly 3-fold enhancement in specific activities compared to those of the wild-type PPGK. The best mutant was used to produce 9.98 g/liter myo-inositol from 10 g/liter glucose, with a theoretical yield of 99.8%, along with two other hyperthermophilic enzymes at 70°C. This PPGK mutant featuring both great thermostability and high activity would be useful for ATP-free production of glucose 6-phosphate or its derived products.IMPORTANCE Polyphosphate glucokinase (PPGK) is an enzyme that transfers a terminal phosphate group from polyphosphate to glucose, producing glucose 6-phosphate. A petri dish-based double-layer high-throughput screening strategy was developed by using ultrathermostable Phytagel as the first layer instead of agar or agarose, followed by a redox dye-based assay for rapid identification of ultrathermostable PPGK mutants. The best mutant featuring both great thermostability and high activity could produce glucose 6-phosphate from glucose and polyphosphate without in vitro ATP regeneration.


SOIL ◽  
2016 ◽  
Vol 2 (2) ◽  
pp. 257-270 ◽  
Author(s):  
Mohammed Ahmed ◽  
Melanie Sapp ◽  
Thomas Prior ◽  
Gerrit Karssen ◽  
Matthew Alan Back

Abstract. Nematodes represent a species-rich and morphologically diverse group of metazoans known to inhabit both aquatic and terrestrial environments. Their role as biological indicators and as key players in nutrient cycling has been well documented. Some plant-parasitic species are also known to cause significant losses to crop production. In spite of this, there still exists a huge gap in our knowledge of their diversity due to the enormity of time and expertise often involved in characterising species using phenotypic features. Molecular methodology provides useful means of complementing the limited number of reliable diagnostic characters available for morphology-based identification. We discuss herein some of the limitations of traditional taxonomy and how molecular methodologies, especially the use of high-throughput sequencing, have assisted in carrying out large-scale nematode community studies and characterisation of phytonematodes through rapid identification of multiple taxa. We also provide brief descriptions of some the current and almost-outdated high-throughput sequencing platforms and their applications in both plant nematology and soil ecology.


Sign in / Sign up

Export Citation Format

Share Document