Electrospun nickel ferrite nanofibers reinforced polyaniline composite for high-performance room temperature ammonia sensing

2022 ◽  
Vol 284 ◽  
pp. 117004
Author(s):  
Nayana D. Sonwane ◽  
Subhash B. Kondawar
2020 ◽  
Vol 34 (17) ◽  
pp. 2050188
Author(s):  
Seyede Azadeh Hejazi Juybari ◽  
Hossain Milani Moghaddam

Polypyrrole (PPy)–Zn2SnO4 nanocomposites with different weight percentages (0–20%) of Zn2SnO4 were successfully prepared by chemical oxidative polymerization. The prepared nanocomposites were deposited on epoxy glass substrate using a spin coating technique and have been characterized using various techniques such as X-ray diffractometer, field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR) spectrometer. The physicochemical characterization confirmed well-formed dodecylbenzene (DBSA)-doped PPy–Zn2SnO4 nanocomposites with granular morphology and high porosity. Among various nanocompositions, DBSA-doped PPy–Zn2SnO4 (10 wt.%) nanocomposite was found to be highly sensitive towards NH3 vapor at room temperature i.e. with a chemiresistive response of 5.44% at 27 ppm with a reasonably fast recovery time of 76 s. Additionally, it shows a linear response and appropriate recovery time at all concentrations of NH3 vapor. The DBSA-doped PPy–Zn2SnO4 nanocomposite response is four times better than pure PPy toward NH3 vapor at room temperature. Therefore, it is expected that such material with excellent gas sensing properties at room temperature can be used for high-performance NH3 sensors.


Author(s):  
Sotirios Christodoulou ◽  
Francesco Di Stasio ◽  
Santanu Pradhan ◽  
Inigo Ramiro ◽  
Yu Bi ◽  
...  

2020 ◽  
Vol 40 (8) ◽  
pp. 676-684
Author(s):  
Niping Dai ◽  
Junkun Tang ◽  
Manping Ma ◽  
Xiaotian Liu ◽  
Chuan Li ◽  
...  

AbstractStar-shaped arylacetylene resins, tris(3-ethynyl-phenylethynyl)methylsilane, tris(3-ethynyl-phenylethynyl) phenylsilane, and tris (3-ethynyl-phenylethynyl) silane (TEPHS), were synthesized through Grignard reaction between 1,3-diethynylbenzene and three types of trichlorinated silanes. The chemical structures and properties of the resins were characterized by means of nuclear magnetic resonance, fourier-transform infrared spectroscopy, Haake torque rheomoter, differential scanning calorimetry, dynamic mechanical analysis, mechanical test, and thermogravimetric analysis. The results show that the melt viscosity at 120 °C is lower than 150 mPa⋅s, and the processing windows are as wide as 60 °C for the resins. The resins cure at the temperature as low as 150 °C. The good processabilities make the resins to be suitable for resin transfer molding. The cured resins exhibit high flexural modulus and excellent heat-resistance. The flexural modulus of the cured TEPHS at room temperature arrives at as high as 10.9 GPa. Its temperature of 5% weight loss (Td5) is up to 697 °C in nitrogen. The resins show the potential for application in fiber-reinforced composites as high-performance resin in the field of aviation and aerospace.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1692
Author(s):  
Emmanuel K. Ampadu ◽  
Jungdong Kim ◽  
Eunsoon Oh

We fabricated a lateral photovoltaic device for use as infrared to terahertz (THz) detectors by chemically depositing PbS films on titanium substrates. We discussed the material properties of PbS films grown on glass with varying deposition conditions. PbS was deposited on Ti substrates and by taking advantage of the Ti/PbS Schottky junction, we discussed the photocurrent transients as well as the room temperature spectrum response measured by Fourier transform infrared (FTIR) spectrometer. Our photovoltaic PbS device operates at room temperature for wavelength ranges up to 50 µm, which is in the terahertz region, making the device highly applicable in many fields.


Author(s):  
Kumar Haunsbhavi ◽  
Karuppiah Deva Arun Kumar ◽  
Paolo Mele ◽  
Omar M. Aldossary ◽  
Mohd Ubaidullah ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


Sign in / Sign up

Export Citation Format

Share Document