809 HEPATITIS C VIRUS PERSISTENCE IN QUIESCENT HEPATIC CELLS UNDER CONDITIONS OF AN INTERFERON-INDUCED ANTIVIRAL RESPONSE

2012 ◽  
Vol 56 ◽  
pp. S316
Author(s):  
B. Schmid ◽  
O. Bauhofer ◽  
A. Ruggieri ◽  
R. Bartenschlager
2012 ◽  
Vol 85 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Pasi Kaukinen ◽  
Maarit Sillanpää ◽  
Laura Nousiainen ◽  
Krister Melén ◽  
Ilkka Julkunen

2001 ◽  
Vol 75 (13) ◽  
pp. 6095-6106 ◽  
Author(s):  
Stephen J. Polyak ◽  
Khalid S. A. Khabar ◽  
Denise M. Paschal ◽  
Heather J. Ezelle ◽  
Gilles Duverlie ◽  
...  

ABSTRACT Hepatitis C virus (HCV), a major cause of liver disease worldwide, is frequently resistant to the antiviral alpha interferon (IFN). The HCV nonstructural 5A (NS5A) protein has been implicated in HCV antiviral resistance in many studies. NS5A antagonizes the IFN antiviral response in vitro, and one mechanism is via inhibition of a key IFN-induced enzyme, the double-stranded-RNA-activated protein kinase (PKR). In the present study we determined if NS5A uses other strategies to subvert the IFN system. Expression of full-length NS5A proteins from patients who exhibited a complete response (FL-NS5A-CR) or were nonresponsive (FL-NS5A-NR) to IFN therapy in HeLa cells had no effect on IFN induction of IFN-stimulated gene factor 3 (ISGF-3). Expression of mutant NS5A proteins lacking 110 (NS5A-ΔN110), 222 (NS5A-ΔN222), and 334 amino-terminal amino acids and mutants lacking 117 and 230 carboxy-terminal amino acids also had no effect on ISGF-3 induction by IFN. Expression of FL-NS5A-CR and FL-NS5A-NR did not affect IFN-induced STAT-1 tyrosine phosphorylation or upregulation of PKR and major histocompatibility complex class I antigens. However, NS5A expression in human cells induced interleukin 8 (IL-8) mRNA and protein, and this effect correlated with inhibition of the antiviral effects of IFN in an in vitro bioassay. NS5A induced transcription of a reporter gene driven by the IL-8 promoter, and the first 133 bp of the IL-8 promoter made up the minimal domain required for NS5A transactivation. NS5A-ΔN110 and NS5A-ΔN222 stimulated the IL-8 promoter to higher levels than did the full-length NS5A protein, and this correlated with increased nuclear localization of the proteins. Additional mutagenesis of the IL-8 promoter suggested that NF-κB and AP-1 were important in NS5A-ΔN222 transactivation in the presence of tumor necrosis factor alpha and that NF–IL-6 was inhibitory to this process. This study suggests that NS5A inhibits the antiviral actions of IFN by at least two mechanisms and provides the first evidence for a biological effect of the transcriptional activity of the NS5A protein. During HCV infection, viral proteins may induce chemokines that contribute to HCV antiviral resistance and pathogenesis.


2012 ◽  
Vol 168 (1-2) ◽  
pp. 33-40 ◽  
Author(s):  
Li Ye ◽  
Jieliang Li ◽  
Ting Zhang ◽  
Xu Wang ◽  
Yizhong Wang ◽  
...  

2011 ◽  
Vol 141 (3) ◽  
pp. 1057-1066 ◽  
Author(s):  
Gang Long ◽  
Marie–Sophie Hiet ◽  
Marc P. Windisch ◽  
Ji–Young Lee ◽  
Volker Lohmann ◽  
...  

Lupus ◽  
2015 ◽  
Vol 24 (10) ◽  
pp. 1029-1036 ◽  
Author(s):  
M-H Chen ◽  
M-H Chen ◽  
C-Y Tsai ◽  
C-T Chou ◽  
H-Y Lin ◽  
...  

2020 ◽  
Author(s):  
Chikako Ono ◽  
Takasuke Fukuhara ◽  
Songling Li ◽  
Jian Wang ◽  
Asuka Sato ◽  
...  

AbstractOne of the determinants for tissue tropism of hepatitis C virus (HCV) is miR-122, a liver-specific microRNA. Recently, it has been reported that interaction of miR-122 to HCV RNA induces a conformational change of the 5’UTR internal ribosome entry site (IRES) structure to form stem-loop II structure (SLII) and hijack of translating 80S ribosome through the binding of SLIII to 40S subunit, which leads to efficient translation. On the other hand, low levels of HCV-RNA replication have also been detected in some non-hepatic cells; however, the details of extrahepatic replication remain unknown. These observations suggest the possibility that miRNAs other than miR-122 can support efficient replication of HCV-RNA in non-hepatic cells. Here, we identified a number of such miRNAs and show that they could be divided into two groups: those that bind HCV-RNA at two locations (miR-122 binding sites I and II), in a manner similar to miR-122 (miR-122-like), and those that target a single site that bridges sites I and II and masking both G28 and C29 in the 5’UTR (non-miR-122-like). Although the enhancing activity of these non-hepatic miRNAs were lower than those of miR-122, substantial expression was detected in various normal tissues. Furthermore, structural modeling indicated that both miR-122-like and non-miR-122-like miRNAs not only can facilitate the formation of an HCV IRES SLII but also can stabilize IRES 3D structure in order to facilitate binding of SLIII to the ribosome. Together, these results suggest that HCV facilitates miR-122-independent replication in non-hepatic cells through recruitment of miRNAs other than miR-122. And our findings can provide a more detailed mechanism of miR-122-dependent enhancement of HCV-RNA translation by focusing on IRES tertiary structure.Author summaryOne of the determinants for tissue tropism of hepatitis C virus (HCV) is miR-122, a liver-specific microRNA, which is required for efficient propagation. Recently, it has been reported that interaction of miR-122 with the 5’UTR of HCV contributes to the folding of a functional IRES structure that is required for efficient translation of viral RNA. In this study, we examined the minimum motifs in the seed region of miRNAs required for the enhancement of HCV replication. As a result, we found two groups of non-hepatic miRNAs: “miR-122-like miRNAs” that can bind HCV-RNA at two locations in a manner similar to miR-122, and “non-miR-122-like miRNAs” that target a single site that masking both G28 and C29 in the 5’UTR. The interaction of these non-hepatic miRNAs with the 5’UTR can facilitate not only the folding of active HCV IRES but also the stabilization of IRES 3D structure in order to facilitate binding to the ribosome. These results suggest the possibility of replication of HCV in non-hepatic cells through interaction with miRNAs other than miR-122 and provide insight into the establishment of persistent infection of HCV in non-hepatic tissues that lead to the development of extrahepatic manifestations.


2021 ◽  
Author(s):  
Talari Praveen

Scientists were successful in discovering Hepatitis A and B, but there is another virus which has a long incubation period, many people are asymptomatic and cause adverse effects. Three scientists Harvey J Alter, Michael Houghton and Charles M Rice who have contributed their work in discovering a non-A, non-B hepatitis virus called Hepatitis C. Hepatitis is a disorder associated with the functioning hepatic cells in the liver. The person infected with Hepatitis C will have poor functioning of liver, vomiting, fatigue, jaundice and appetite. In this paper, I am going to explain about the Hepatitis C virus, and the work was done by three scientists and various research around it.


Traffic ◽  
2017 ◽  
Vol 18 (6) ◽  
pp. 362-377 ◽  
Author(s):  
Bridget Gagné ◽  
Nicolas Tremblay ◽  
Alex Y. Park ◽  
Martin Baril ◽  
Daniel Lamarre

Sign in / Sign up

Export Citation Format

Share Document