scholarly journals An approach to drastically reduce the required legs DOFs for bipedal robots and lower-limb exoskeletons

Robotica ◽  
2021 ◽  
pp. 1-15
Author(s):  
Rodrigo S. Jamisola ◽  
Rodney G. Roberts

Abstract We present a method to drastically reduce the required number of degrees-of-freedom (DOFs) needed for walking for each leg of bipedal robots and lower-limb exoskeletons. This approach releases more legs DOFs in the null space to do other tasks, instead of unnecessarily constraining them. It uses relative reference frames to control relative motion between the two feet, instead of the usual method of controlling foot movement with respect to fixed reference frames. In its basic form, it controls the bipedal walking holistically using two controllers: (1) world space control using relative feet motion and (2) null-space control of the legs posture.

Author(s):  
Steven Charles

In order to analyze the kinematics or model the dynamics of human motion, one must be able to abstract from the intricate anatomy of the body the mechanical linkages and kinematic constraints which best approximate the joints of the body. Given the number and complexity of joints in the human body, this abstraction can be a challenging task, especially for students. While rotations about a single degree of freedom are easy to grasp, rotations about multiple DOF, which occur commonly throughout the body (e.g. shoulder, wrist, ankle, etc.) are anything but trivial. Likewise, the kinematics or dynamics of mechanical linkages such as the upper or lower limb quickly become unwieldy. To deal with these challenges, students learn to use tools from mechanics and robotics (body- and space-fixed reference frames, transformations, generalized coordinates, etc.), but these concepts can themselves be challenging and certainly take time to learn.


2017 ◽  
Vol 17 (07) ◽  
pp. 1740013 ◽  
Author(s):  
XIZHE ZANG ◽  
ZHENKUN LIN ◽  
XINRAN SUN ◽  
YIXIANG LIU

Human lower limbs have particular flexibility. Both the efficiency of bipedal walking and the ability to protect actuators with low energy loss are worthy references for the design of bipedal robots. This paper proposes a design for a biped robot with joints of variable stiffness. The robot has three degrees of freedom in the sagittal plane in each leg. The hips and knees are driven directly by the motor, while the ankles are passive joints with adjustable stiffness. After a comprehensive investigation, a variable stiffness mechanism was introduced based on lever principles, and driven by a motor that can realize real-time adjustment. Simulations verified the necessity of variable stiffness joints in the robot. The variable stiffness joint can absorb the ground impact on each joint, reduce the energy loss of the motor, and improve the efficiency of movement.


2014 ◽  
Vol 601 ◽  
pp. 193-196
Author(s):  
Lucian Rusu ◽  
Mirela Toth-Taşcău ◽  
Cristian Toader-Pasti

The aim of this paper is to develop and validate the mathematical model of the human lower limb based on Denavit-Hartenberg (D-H) robotics convention. The proposed geometric model has 7 degrees of freedom (DOF) (3 DOF in hip joint, 2 DOF in knee joint, and 2 DOF in ankle joint). The fixed reference system was placed in the weight centre of the human body. The input data for the model are the angle variations and anthropometric parameters of the lower limb. The angle variations can be defined or imported from a gait analysis system. The anthropometric parameters were introduced from the literature. The model can be adapted to both left and right lower limb. The geometric model was solved in MATLAB environment. The model validation was individually realized taking into account the normal range of motion (ROM) of each joint.


2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Kara B. Bellenfant ◽  
Gracie L. Robbins ◽  
Rebecca R. Rogers ◽  
Thomas J. Kopec ◽  
Christopher G. Ballmann

The purpose of this study was to investigate the effects of how limb dominance and joint immobilization alter markers of physical demand and muscle activation during ambulation with axillary crutches. In a crossover, counterbalanced study design, physically active females completed ambulation trials with three conditions: (1) bipedal walking (BW), (2) axillary crutch ambulation with their dominant limb (DOM), and (3) axillary crutch ambulation with their nondominant limb (NDOM). During the axillary crutch ambulation conditions, the non-weight-bearing knee joint was immobilized at a 30-degree flexion angle with a postoperative knee stabilizer. For each trial/condition, participants ambulated at 0.6, 0.8, and 1.0 mph for five minutes at each speed. Heart rate (HR) and rate of perceived exertion (RPE) were monitored throughout. Surface electromyography (sEMG) was used to record muscle activation of the medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) unilaterally on the weight-bearing limb. Biceps brachii (BB) and triceps brachii (TB) sEMG were measured bilaterally. sEMG signals for each immobilization condition were normalized to corresponding values for BW.HR (p < 0.001) and RPE (p < 0.001) were significantly higher for both the DOM and NDOM conditions compared to BW but no differences existed between the DOM and NDOM conditions (p > 0.05). No differences in lower limb muscle activation were noted for any muscles between the DOM and NDOM conditions (p > 0.05). Regardless of condition, BB activation ipsilateral to the ambulating limb was significantly lower during 0.6 mph (p = 0.005) and 0.8 mph (p = 0.016) compared to the same speeds for BB on the contralateral side. Contralateral TB activation was significantly higher during 0.6 mph compared to 0.8 mph (p = 0.009) and 1.0 mph (p = 0.029) irrespective of condition. In conclusion, limb dominance appears to not alter lower limb muscle activation and walking intensity while using axillary crutches. However, upper limb muscle activation was asymmetrical during axillary crutch use and largely dependent on speed. These results suggest that functional asymmetry may exist in upper limbs but not lower limbs during assistive device supported ambulation.


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Paolo Di Lillo ◽  
Gianluca Antonelli ◽  
Ciro Natale

SUMMARY Control algorithms of many Degrees-of-Freedom (DOFs) systems based on Inverse Kinematics (IK) or Inverse Dynamics (ID) approaches are two well-known topics of research in robotics. The large number of DOFs allows the design of many concurrent tasks arranged in priorities, that can be solved either at kinematic or dynamic level. This paper investigates the effects of modeling errors in operational space control algorithms with respect to uncertainties affecting knowledge of the dynamic parameters. The effects on the null-space projections and the sources of steady-state errors are investigated. Numerical simulations with on-purpose injected errors are used to validate the thoughts.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alexander Agboola-Dobson ◽  
Guowu Wei ◽  
Lei Ren

Recent advancements in powered lower limb prostheses have appeased several difficulties faced by lower limb amputees by using a series-elastic actuator (SEA) to provide powered sagittal plane flexion. Unfortunately, these devices are currently unable to provide both powered sagittal plane flexion and two degrees of freedom (2-DOF) at the ankle, removing the ankle’s capacity to invert/evert, thus severely limiting terrain adaption capabilities and user comfort. The developed 2-DOF ankle system in this paper allows both powered flexion in the sagittal plane and passive rotation in the frontal plane; an SEA emulates the biomechanics of the gastrocnemius and Achilles tendon for flexion while a novel universal-joint system provides the 2-DOF. Several studies were undertaken to thoroughly characterize the capabilities of the device. Under both level- and sloped-ground conditions, ankle torque and kinematic data were obtained by using force-plates and a motion capture system. The device was found to be fully capable of providing powered sagittal plane motion and torque very close to that of a biological ankle while simultaneously being able to adapt to sloped terrain by undergoing frontal plane motion, thus providing 2-DOF at the ankle. These findings demonstrate that the device presented in this paper poses radical improvements to powered prosthetic ankle-foot device (PAFD) design.


Author(s):  
Michael John Chua ◽  
Yen-Chen Liu

Abstract This paper presents cooperation and null-space control for networked mobile manipulators with high degrees of freedom (DOFs). First, kinematic model and Euler-Lagrange dynamic model of the mobile manipulator, which has an articulated robot arm mounted on a mobile base with omni-directional wheels, have been presented. Then, the dynamic decoupling has been considered so that the task-space and the null-space can be controlled separately to accomplish different missions. The motion of the end-effector is controlled in the task-space, and the force control is implemented to make sure the cooperation of the mobile manipulators, as well as the transportation tasks. Also, the null-space control for the manipulator has been combined into the decoupling control. For the mobile base, it is controlled in the null-space to track the velocity of the end-effector, avoid other agents, avoid the obstacles, and move in a defined range based on the length of the manipulator without affecting the main task. Numerical simulations have been addressed to demonstrate the proposed methods.


2014 ◽  
Vol 14 (06) ◽  
pp. 1440004 ◽  
Author(s):  
SHUAI GUO ◽  
JIANCHENG JI ◽  
GUANGWEI MA ◽  
TAO SONG ◽  
JING WANG

After analyzing the rehabilitation needs of stroke patients and the previous studies on lower limb rehabilitation robot, our lower limb rehabilitation robot is designed for stroke patients' gait and balance training. The robot consists of the mobile chassis, the support column and the pelvis mechanism and it is described in detail. As the pelvis mechanism allows most of the patient's motion degrees of freedom (DOFs), the kinematics model of the mechanism is set up, and kinematics simulation is carried out to study the motion characteristics of the mechanism. After analyzing the calculation and simulation results, the pelvis mechanism is proven to measure up to the movement needs of the paralytic's waist and pelvis in walking rehabilitation process.


Author(s):  
Afrizal Mayub ◽  
Fahmizal Fahmizal

This paper presents a sensor-based stability walk for bipedal robots by using force sensitive resistor (FSR) sensor. To perform walk stability on uneven terrain conditions, FSR sensor is used as feedbacks to evaluate the stability of bipedal robot instead of the center of pressure (CoP). In this work, CoP that was generated from four FSR sensors placed on each foot-pad is used to evaluate the walking stability. The robot CoP position provided an indication of walk stability. The CoP position information was further evaluated with a fuzzy logic controller (FLC) to generate appropriate offset angles to be applied to meet a stable situation. Moreover, in this paper designed a FLC through CoP region's stability and stable compliance control are introduced. Finally, the performances of the proposed methods were verified with 18-degrees of freedom (DOF) kid-size bipedal robot.<br /><br />


Author(s):  
Marco Tarabini ◽  
Hermes Giberti ◽  
Silvio Giancola ◽  
Matteo Sgrenzaroli ◽  
Remo Sala ◽  
...  

Recent researches proved that the underbridge geometry can be reconstructed by mounting a 3D laser scanner on a motorized cart travelling on a walkway located under the bridge. The walkway is moved by a truck and the accuracy of the bridge model depends on the accuracy of the trajectory of the scanning head with respect to a fixed reference system. In this paper, we describe the metrological characterization of a method that uses non-contact systems to identify the relative motion of the cart with respect to the walkway; the orientation of the walkway with respect to the bridge is determined using inclinometers and optical rails, while the position of the truck with respect to the bridge is measured using a conventional odometer.&nbsp; The measurement uncertainty of the proposed system was initially evaluated by numerical simulations and successively verified by experiments in laboratory conditions. The complete system has then been tested in operative conditions; the validity of the proposed approach has been demonstrated by comparing the geometry of buildings reconstructed with the proposed system with the geometry obtained with a static scan. Results evidenced that the errors are approximately 6 mm.


Sign in / Sign up

Export Citation Format

Share Document