Some Effects of Oxidant Air Pollutants (Ozone and Peroxyacetyl Nitrate) on the Ultrastructure of Leaf Tissues

Author(s):  
William W. Thomson ◽  
Elizabeth S. Swanson

The oxidant air pollutants, ozone and peroxyacetyl nitrate, are produced in the atmosphere through the interaction of light with nitrogen oxides and gaseous hydrocarbons. These oxidants are phytotoxicants and are known to deleteriously affect plant growth, physiology, and biochemistry. In many instances they induce changes which lead to the death of cells, tissues, organs, and frequently the entire plant. The most obvious damage and biochemical changes are generally observed with leaves.Electron microscopic examination of leaves from bean (Phaseolus vulgaris L.) tobacco (Nicotiana tabacum L.) and cotton (Gossipyum hirsutum L.) fumigated for .5 to 2 hours with 0.3 -1 ppm of the individual oxidants revealed that changes in the ultrastructure of the cells occurred in a sequential fashion with time following the fumigation period. Although occasional cells showed severe damage immediately after fumigation, the most obvious change was an enhanced clarity of the cell membranes.

Author(s):  
Jan Zarzycki ◽  
Joseph Szroeder

The mammary gland ultrastructure in various functional states is the object of our investigations. The material prepared for electron microscopic examination by the conventional chemical methods has several limitations, the most important are the protein denaturation processes and the loss of large amounts of chemical constituents from the cells. In relevance to this,one can't be sure about a degree the observed images are adequate to the realy ultrastructure of a living cell. To avoid the disadvantages of the chemical preparation methods,some autors worked out alternative physical methods based on tissue freezing / freeze-drying, freeze-substitution, freeze-eatching techniqs/; actually the technique of cryoultraraicrotomy,i,e.cutting ultrathin sections from deep frozen specimens is assented as a complete alternative method. According to the limitations of the routine plastic embbeding methods we were interested to analize the mammary gland ultrastructure during lactation by the cryoultramicrotomy method.


Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


Author(s):  
P. Frayssinet ◽  
J. Hanker ◽  
D. Hardy ◽  
B. Giammara

Prostheses implanted in hard tissues cannot be processed for electron microscopic examination or microanalysis in the same way as those in other tissues. For these reasons, we have developed methods allowing light and electron microscopic studies as well as microanalysis of the interface between bone and a metal biomaterial coated by plasma-sprayed hydroxylapatite(HA) ceramic.An HA-coated titanium hip prosthesis (Corail, Landos, France), which had been implanted for two years, was removed after death (unrelated to the orthopaedic problem). After fixation it was dehydrated in solutions of increasing ethanol concentration prior to embedment in polymethylmethacrylate(PMMA). Transverse femur sections were obtained with a diamond saw and the sections then carefully ground to a thickness of 200 microns. Plastic-embedded sections were stained for calcium with a silver methenamine modification of the von Kossa method for calcium staining and coated by carbon. They have been examined by back-scatter SEM on an ISI-SS60 operated at 25 KV. EDAX has been done on cellular inclusions and extracellular bone matrix.


Author(s):  
K. S. McCarty ◽  
R. F. Weave ◽  
L. Kemper ◽  
F. S. Vogel

During the prodromal stages of sporulation in the Basidiomycete, Agaricus bisporus, mitochondria accumulate in the basidial cells, zygotes, in the gill tissues prior to entry of these mitochondria, together with two haploid nuclei and cytoplasmic ribosomes, into the exospores. The mitochondria contain prominent loci of DNA [Fig. 1]. A modified Kleinschmidt spread technique1 has been used to evaluate the DNA strands from purified whole mitochondria released by osmotic shock, mitochondrial DNA purified on CsCl gradients [density = 1.698 gms/cc], and DNA purified on ethidium bromide CsCl gradients. The DNA appeared as linear strands up to 25 u in length and circular forms 2.2-5.2 u in circumference. In specimens prepared by osmotic shock, many strands of DNA are apparently attached to membrane fragments [Fig. 2]. When mitochondria were ruptured in hypotonic sucrose and then fixed in glutaraldehyde, the ribosomes were released for electron microscopic examination.


Author(s):  
Wah Chiu ◽  
David Grano

The periodic structure external to the outer membrane of Spirillum serpens VHA has been isolated by similar procedures to those used by Buckmire and Murray (1). From SDS gel electrophoresis, we have found that the isolated fragments contain several protein components, and that the crystalline structure is composed of a glycoprotein component with a molecular weight of ∽ 140,000 daltons (2). Under an electron microscopic examination, we have visualized the hexagonally-packed glycoprotein subunits, as well as the bilayer profile of the outer membrane. In this paper, we will discuss some structural aspects of the crystalline glycoproteins, based on computer-reconstructed images of the external cell wall fragments.The specimens were prepared for electron microscopy in two ways: negatively stained with 1% PTA, and maintained in a frozen-hydrated state (3). The micrographs were taken with a JEM-100B electron microscope with a field emission gun. The minimum exposure technique was essential for imaging the frozen- hydrated specimens.


Author(s):  
S. Shirahama ◽  
G. C. Engle ◽  
R. M. Dutcher

A transplantable carcinoma was established in North West Sprague Dawley (NWSD) rats by use of X-irradiation by Engle and Spencer. The tumor was passaged through 63 generations over a period of 32 months. The original tumor, an adenocarcinoma, changed into an undifferentiated carcinoma following the 19th transplant. The tumor grew well in NWSD rats of either sex at various ages. It was invariably fatal, causing death of the host within 15 to 35 days following transplantation.Tumor, thymus, spleen, and plasma from 7 rats receiving transplants of tumor at 3 to 9 weeks of age were examined with an electron microscope at intervals of 8, 15, 22 and 30 days after transplantation. Four normal control rats of the same age were also examined. The tissues were fixed in glutaraldehyde, postfixed in osmium tetroxide and embedded in Epon. The plasma was separated from heparanized blood and processed as previously described for the tissue specimens. Sections were stained with uranyl acetate followed by lead citrate and examined with an RCA EMU-3G electron microscope.


Author(s):  
Veronika Burmeister ◽  
N. Ludvig ◽  
P.C. Jobe

Electron microscopic immunocytochemistry provides an important tool to determine the ultrastructural distribution of various molecules in both normal and pathologic tissues. However, the specific immunostaining may be obscured by artifactual immunoreaction product, misleading the investigator. Previous observations show that shortening the incubation period with the primary antibody from the generally used 12-24 hours to 1 hour substantially reduces the artifactual immunostaining. We now extend this finding by the demonstration of artifact-free ultrastructural localization of the Ca2/calmodulindependent cyclic nucleotide phosphodiesterase (CaM-dependent PDE) immunoreactivity in brain.Anesthetized rats were perfused transcardially with phosphate-buffered saline followed by a fixative containing paraformaldehyde (4%) and glutaraldehyde (0.25%) in PBS. The brains were removed, and 40μm sections were cut with a vibratome. The sections were processed for immunocytochemistry as described by Ludvig et al. Both non-immune rabbit serum and specific CaM-dependent PDE antibodies were used. In both experiments incubations were at one hour and overnight. The immunostained sections were processed for electron microscopic examination.


Author(s):  
R.E. Nordquist ◽  
R.M. Wasik ◽  
P.J. Riggs ◽  
P.L. Munson ◽  
F.B. Schafer

An infiltrating ductal cell carcinoma was removed from the breast of a postmenopausal Caucasian female. The excised tissue was divided into three parts; one part for electron microscopy, one part for tissue culture and the remainder frozen for immunological studies.The tissue for culture was minced finely with sterile razor blades and cultured in Falcon flasks containing Eagel's MEM supplemented with 10% heat denatured fetal calf serum. The tissue for electron microscopy was fixed in 6.25% glutaraldehyde in 0.1 M PO4 buffer plus 5% sucrose and postfixed in 1% OsO4 in the same buffer. The fixed tissue was dehydrated in graded ethanol and embedded in Spurr.The tissue which was cultured began to grow out after approximately six weeks and became a continuous epithelial cell line which was designated BOT-2 (Breast Original Tumor). Electron microscopic examination revealed that these cells had epithelial characteristics, i.e. the presence of tonofilaments and well formed desmosomes.


Author(s):  
D.R. Mattie ◽  
C.J. Hixson

Dimethylmethylphosphonate (DMMP) is a simple organophosphate used industrially as a flame retardant and to lower viscosity in polyester and epoxy resins. The military considered the use of DMMP as a nerve gas simulant. Since military use of DMMP involved exposure by inhalation, there was a need for a subchronic inhalation exposure to DMMP to fully investigate its toxic potential.Male Fischer-344 rats were exposed to 25 ppm or 250 ppm DMMP vapor on a continuous basis for 90 days. An equal number of control rats were sham-exposed. Following the 90-day continuous exposure period, 15 male rats were sacrificed from each group. Two rats from each group had the left kidney perfused for electron microscopic examination. The kidneys were perfused from a height of 150 cm water with 1% glutaraldehyde in Sorensen's 0.1M phosphate buffer pH 7.2. An additional kidney was taken from a rat in each group and fixed by immersion in 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1M cacodylate buffer pH 7.4. A portion of the 9 kidneys collected for electron microscopy were processed into Epon 812. Thin sections, stained with uranyl acetate and lead citrate, were examined with a JEOL 100B Transmission Electron Microscope. Microvilli height was measured on photographs of the cells of proximal tubules. This data, along with morphologic features of the cells, allows the proximal convoluted tubules (PCT) to be identified as being S1, S2, or S3 segment PCT.


Author(s):  
Z. M. Yaschyshyn ◽  
S. L. Popel

The aim: to study the dynamics of histological and ultrastructural changes in muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia at different stages of ontogenesis. Methods. Studied skeletal muscles and their peripheral nervous apparatus of laboratory male Wistar rats aged 30 to 270 days. The restriction of motor activity was carried out in special canister cells for 30, 60, 90, and 240 days (5 animals for each term). To determine the type of muscle fiber, the Nahlas histochemical method was used, the Kulchitsky method was used to detect myelinated nerve fibers, the Bilshovsky-Gros method and the electron microscopic method to identify neuromuscular endings. Results. The data of histological and electron microscopic examination of skeletal muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia indicate their regular restructuring during the development of muscles, the formation of their synapses and structures that are associated with them at different stages of ontogenesis. Conclusion. The study provides an in-depth understanding of the relative frequency and nature of the disturbance of the neuromuscular endings during prolonged hypokinesia and its effect on the dynamics of structural adjustment of individual types of muscle fibers in ontogenesis.


Sign in / Sign up

Export Citation Format

Share Document