scholarly journals Functional brain organization for visual search in ASD

2008 ◽  
Vol 14 (6) ◽  
pp. 990-1003 ◽  
Author(s):  
BRANDON KEEHN ◽  
LAURIE BRENNER ◽  
ERICA PALMER ◽  
ALAN J. LINCOLN ◽  
RALPH-AXEL MÜLLER

AbstractAlthough previous studies have shown that individuals with autism spectrum disorder (ASD) excel at visual search, underlying neural mechanisms remain unknown. This study investigated the neurofunctional correlates of visual search in children with ASD and matched typically developing (TD) children, using an event-related functional magnetic resonance imaging design. We used a visual search paradigm, manipulating search difficulty by varying set size (6, 12, or 24 items), distractor composition (heterogeneous or homogeneous) and target presence to identify brain regions associated with efficient and inefficient search. While the ASD group did not evidence accelerated response time (RT) compared with the TD group, they did demonstrate increased search efficiency, as measured by RT by set size slopes. Activation patterns also showed differences between ASD group, which recruited a network including frontal, parietal, and occipital cortices, and the TD group, which showed less extensive activation mostly limited to occipito-temporal regions. Direct comparisons (for both homogeneous and heterogeneous search conditions) revealed greater activation in occipital and frontoparietal regions in ASD than in TD participants. These results suggest that search efficiency in ASD may be related to enhanced discrimination (reflected in occipital activation) and increased top-down modulation of visual attention (associated with frontoparietal activation). (JINS, 2008, 14, 990–1003.)

2020 ◽  
Vol 30 (9) ◽  
pp. 5107-5120 ◽  
Author(s):  
Katherine E Lawrence ◽  
Leanna M Hernandez ◽  
Hilary C Bowman ◽  
Namita T Padgaonkar ◽  
Emily Fuster ◽  
...  

Abstract Autism spectrum disorder (ASD) is associated with the altered functional connectivity of 3 neurocognitive networks that are hypothesized to be central to the symptomatology of ASD: the salience network (SN), default mode network (DMN), and central executive network (CEN). Due to the considerably higher prevalence of ASD in males, however, previous studies examining these networks in ASD have used primarily male samples. It is thus unknown how these networks may be differentially impacted among females with ASD compared to males with ASD, and how such differences may compare to those observed in neurotypical individuals. Here, we investigated the functional connectivity of the SN, DMN, and CEN in a large, well-matched sample of girls and boys with and without ASD (169 youth, ages 8–17). Girls with ASD displayed greater functional connectivity between the DMN and CEN than boys with ASD, whereas typically developing girls and boys differed in SN functional connectivity only. Together, these results demonstrate that youth with ASD exhibit altered sex differences in these networks relative to what is observed in typical development, and highlight the importance of considering sex-related biological factors and participant sex when characterizing the neural mechanisms underlying ASD.


2019 ◽  
Vol 30 (2) ◽  
pp. 824-835 ◽  
Author(s):  
Susanne Weis ◽  
Kaustubh R Patil ◽  
Felix Hoffstaedter ◽  
Alessandra Nostro ◽  
B T Thomas Yeo ◽  
...  

Abstract A large amount of brain imaging research has focused on group studies delineating differences between males and females with respect to both cognitive performance as well as structural and functional brain organization. To supplement existing findings, the present study employed a machine learning approach to assess how accurately participants’ sex can be classified based on spatially specific resting state (RS) brain connectivity, using 2 samples from the Human Connectome Project (n1 = 434, n2 = 310) and 1 fully independent sample from the 1000BRAINS study (n = 941). The classifier, which was trained on 1 sample and tested on the other 2, was able to reliably classify sex, both within sample and across independent samples, differing both with respect to imaging parameters and sample characteristics. Brain regions displaying highest sex classification accuracies were mainly located along the cingulate cortex, medial and lateral frontal cortex, temporoparietal regions, insula, and precuneus. These areas were stable across samples and match well with previously described sex differences in functional brain organization. While our data show a clear link between sex and regionally specific brain connectivity, they do not support a clear-cut dimorphism in functional brain organization that is driven by sex alone.


Autism ◽  
2020 ◽  
Vol 24 (4) ◽  
pp. 941-953 ◽  
Author(s):  
Carla A Mazefsky ◽  
Amanda Collier ◽  
Josh Golt ◽  
Greg J Siegle

Emotion dysregulation is common in autism spectrum disorder; a better understanding of the underlying neural mechanisms could inform treatment development. The tendency toward repetitive cognition in autism spectrum disorder may also increase susceptibility to perseverate on distressing stimuli, which may then increase emotion dysregulation. Therefore, this study investigated the mechanisms of sustained processing of negative information in brain activity using functional magnetic resonance imaging. We used an event-related task that alternated between emotional processing of personally relevant negative words, neutral words, and a non-emotional task. A priori criteria were developed to define heightened and sustained emotional processing, and feature conjunction analysis was conducted to identify all regions satisfying these criteria. Participants included 25 adolescents with autism spectrum disorder and 23 IQ-, age-, and gender-matched typically developing controls. Regions satisfying all a priori criteria included areas in the salience network and the prefrontal dorsolateral cortex, which are areas implicated in emotion regulation outside of autism spectrum disorder. Collectively, activity in the identified regions accounted for a significant amount of variance in emotion dysregulation in the autism spectrum disorder group. Overall, these results may provide a potential neural mechanism to explain emotion dysregulation in autism spectrum disorder, which is a significant risk factor for poor mental health. Lay abstract Many individuals with autism spectrum disorder struggle with emotions that are intense and interfering, which is referred to as emotion dysregulation. Prior research has established that individuals with autism may be more likely than individuals who are not autistic to have repetitive thoughts. It is possible that persistent thoughts about negative or distressing stimuli may contribute to emotion dysregulation in autism spectrum disorder. This study aimed to identify areas of the brain with evidence of persistent processing of negative information via functional magnetic resonance neuroimaging. We used a task that alternated between emotional processing of personally relevant negative words, neutral words, and a non-emotional task. Criteria were developed to define heightened and persistent emotional processing, and analyses were conducted to identify all brain regions satisfying these criteria. Participants included 25 adolescents with autism spectrum disorder and 23 typically developing adolescents who were similar to the autism spectrum disorder group in IQ, age, and gender ratios. Brain regions identified as having greater and continued processing following negative stimuli in the autism spectrum disorder group as compared with the typically developing group included the salience network and the prefrontal dorsolateral cortex. These areas have been previously implicated in emotion dysregulation outside of autism spectrum disorder. Collectively, brain activity in the identified regions was associated with parent-reported emotion dysregulation in the autism spectrum disorder group. These results help to identify a potential process in the brain associated with emotion dysregulation in autism spectrum disorder. This information may be useful for the development of treatments to decrease emotion dysregulation in autism spectrum disorder.


2019 ◽  
Author(s):  
Michal Ramot ◽  
Catherine Walsh ◽  
Gabrielle E. Reimann ◽  
Alex Martin

AbstractExtensive study of typically developing individuals and those on the autism spectrum has identified a large number of brain regions associated with our ability to navigate the social world. Although it is widely appreciated that this so-called ‘social brain’ is composed of distinct, interacting systems, these component parts have yet to be clearly elucidated. Here we used measures of eye movement and neural typicality – based on the degree to which subjects deviated from the norm – while typically developing (N = 62) and individuals with autism (N = 36) watched a large battery of movies depicting social interactions. Our findings provide clear evidence for distinct, but overlapping, neural systems underpinning two major components of the ‘social brain’, social orienting and inferring the mental state of others.


2018 ◽  
Author(s):  
Evelyn MR Lake ◽  
Emily S Finn ◽  
Stephanie M Noble ◽  
Tamara Vanderwal ◽  
Xilin Shen ◽  
...  

ABSTRACTAutism Spectrum Disorder (ASD) is associated with multiple complex abnormalities in functional brain connectivity measured with functional magnetic resonance imaging (fMRI). Despite much research in this area, to date, neuroimaging-based models are not able to characterize individuals with ASD with sufficient sensitivity and specificity; this is likely due to the heterogeneity and complexity of this disorder. Here we apply a data-driven subject-level approach, connectome-based predictive modeling, to resting-state fMRI data from a set of individuals from the Autism Brain Imaging Data Exchange. Using leave-one-subject-out and split-half analyses, we define two functional connectivity networks that predict continuous scores on the Social Responsiveness Scale (SRS) and Autism Diagnostic Observation Schedule (ADOS) and confirm that these networks generalize to novel subjects. Notably, these networks were found to share minimal anatomical overlap. Further, our results generalize to individuals for whom SRS/ADOS scores are unavailable, predicting worse scores for ASD than typically developing individuals. In addition, predicted SRS scores for individuals with attention-deficit/hyperactivity disorder (ADHD) from the ADHD-200 Consortium are linked to ADHD symptoms, supporting the hypothesis that the functional brain organization changes relevant to ASD severity share a component associated with attention. Finally, we explore the membership of predictive connections within conventional (atlas-based) functional networks. In summary, our results suggest that an individual’s functional connectivity profile contains information that supports dimensional, non-binary classification in ASD, aligning with the goals of precision medicine and individual-level diagnosis.


2019 ◽  
Author(s):  
Susanne Weis ◽  
Kaustubh Patil ◽  
Felix Hoffstaedter ◽  
Alessandra Nostro ◽  
B.T. Thomas Yeo ◽  
...  

1AbstractA large amount of brain imaging research has focused on group studies delineating differences between males and females with respect to both cognitive performance as well as structural and functional brain organization. To supplement existing findings, the present study employed a machine learning approach to assess how accurately participants’ sex can be classified based on spatially specific resting state (RS) brain-connectivity, using two samples from the Human Connectome Project (n1 = 434, n2 = 310) and one fully independent sample from the 1000BRAINS study (n=941). The classifier, which was trained on one sample and tested on the other two, was able to reliably classify sex, both within sample and across independent samples, differing both with respect to imaging parameters and sample characteristics. Brain regions displaying highest sex classification accuracies were mainly located along the cingulate cortex, medial and lateral frontal cortex, temporo-parietal regions, insula and precuneus. These areas were stable across samples and match well with previously described sex differences in functional brain organization. While our data show a clear link between sex and regionally specific brain connectivity, they do not support a clear-cut dimorphism in functional brain organization that is driven by sex alone.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hyebin Lee ◽  
Junmo Kwon ◽  
Jong-eun Lee ◽  
Bo-yong Park ◽  
Hyunjin Park

AbstractFunctional hierarchy establishes core axes of the brain, and overweight individuals show alterations in the networks anchored on these axes, particularly in those involved in sensory and cognitive control systems. However, quantitative assessments of hierarchical brain organization in overweight individuals are lacking. Capitalizing stepwise functional connectivity analysis, we assess altered functional connectivity in overweight individuals relative to healthy weight controls along the brain hierarchy. Seeding from the brain regions associated with obesity phenotypes, we conduct stepwise connectivity analysis at different step distances and compare functional degrees between the groups. We find strong functional connectivity in the somatomotor and prefrontal cortices in both groups, and both converge to transmodal systems, including frontoparietal and default-mode networks, as the number of steps increased. Conversely, compared with the healthy weight group, overweight individuals show a marked decrease in functional degree in somatosensory and attention networks across the steps, whereas visual and limbic networks show an increasing trend. Associating functional degree with eating behaviors, we observe negative associations between functional degrees in sensory networks and hunger and disinhibition-related behaviors. Our findings suggest that overweight individuals show disrupted functional network organization along the hierarchical axis of the brain and these results provide insights for behavioral associations.


Author(s):  
Kit W. Cho

Abstract. Words rated for their survival relevance are remembered better than when rated using other well-known memory mnemonics. This finding, which is known as the survival advantage effect and has been replicated in many studies, suggests that our memory systems are molded by natural selection pressures. In two experiments, the present study used a visual search task to examine whether there is likewise a survival advantage for our visual systems. Participants rated words for their survival relevance or for their pleasantness before locating that object’s picture in a search array with 8 or 16 objects. Although there was no difference in search times among the two rating scenarios when set size was 8, survival processing reduced visual search times when set size was 16. These findings reflect a search efficiency effect and suggest that similar to our memory systems, our visual systems are also tuned toward self-preservation.


Sign in / Sign up

Export Citation Format

Share Document