An Incidental Learning Method to Improve Face-Name Memory in Older Adults With Amnestic Mild Cognitive Impairment

2020 ◽  
Vol 26 (9) ◽  
pp. 851-859 ◽  
Author(s):  
Renée K. Biss ◽  
Gillian Rowe ◽  
Lynn Hasher ◽  
Kelly J. Murphy

Objective:Forgetting names is a common memory concern for people with amnestic mild cognitive impairment (aMCI) and is related to explicit memory deficits and pathological changes in the medial temporal lobes at the early stages of Alzheimer’s disease (AD). In the current experiment, we tested a unique method to improve memory for face–name associations in people with aMCI involving incidental rehearsal of face–name pairs.Method:Older adults with aMCI and age- and education-matched controls learned 24 face–name pairs and were tested via immediate cued recall with faces as cues for associated names. During a 25- to 30-min retention interval, 10 of the face–name pairs reappeared as a quarter of the items on a seemingly unrelated 1-back task on faces, with the superimposed names irrelevant to the task. After the delay, surprise delayed cued recall and forced-choice associative recognition tests were administered for the face–name pairs.Results:Both groups showed reduced forgetting of the names that repeated as distraction and enhanced recollection of these pairs.Conclusions:The results demonstrate that passive methods to prompt automatic retrieval of associations may hold promise as interventions for people with early signs of AD.

2012 ◽  
Vol 18 (2) ◽  
pp. 260-268 ◽  
Author(s):  
Wendy S. Ramratan ◽  
Laura A. Rabin ◽  
Cuiling Wang ◽  
Molly E. Zimmerman ◽  
Mindy J. Katz ◽  
...  

AbstractIndividuals with amnestic mild cognitive impairment (aMCI) show deficits on traditional episodic memory tasks and reductions in speed of performance on reaction time tasks. We present results on a novel task, the Cued-Recall Retrieval Speed Task (CRRST), designed to simultaneously measure level and speed of retrieval. A total of 390 older adults (mean age, 80.2 years), learned 16 words based on corresponding categorical cues. In the retrieval phase, we measured accuracy (% correct) and retrieval speed/reaction time (RT; time from cue presentation to voice onset of a correct response) across 6 trials. Compared to healthy elderly adults (HEA, n = 303), those with aMCI (n = 87) exhibited poorer performance in retrieval speed (difference = −0.13; p < .0001) and accuracy on the first trial (difference = −0.19; p < .0001), and their rate of improvement in retrieval speed was slower over subsequent trials. Those with aMCI also had greater within-person variability in processing speed (variance ratio = 1.22; p = .0098) and greater between-person variability in accuracy (variance ratio = 2.08; p = .0001) relative to HEA. Results are discussed in relation to the possibility that computer-based measures of cued-learning and processing speed variability may facilitate early detection of dementia in at-risk older adults. (JINS, 2012, 18, 260–268)


2009 ◽  
Vol 15 (5) ◽  
pp. 704-716 ◽  
Author(s):  
TOBI LUBINSKY ◽  
JILL B. RICH ◽  
NICOLE D. ANDERSON

AbstractErrorless learning is an intervention that benefits memory performance in healthy older adults and a variety of clinical populations. A limitation of the errorless learning technique is that it is passive and does not involve elaborative processing. We report two studies investigating the added benefits of elaborative, self-generated learning to the errorless learning advantage. We also explored the mnemonic mechanisms of the errorless learning advantage. In both studies, older adults and individuals with amnestic mild cognitive impairment (aMCI) completed four encoding conditions representing the crossing of errorless/errorful learning and self-generated/experimenter-provided learning. Self-generation enhanced the errorless learning benefit in cued recall and cued recognition, but not in free recall or item recognition. An errorless learning advantage was observed for priming of target words, and this effect was amplified for participants with aMCI after self-generated learning. Moreover, the aMCI group showed significant priming of prior self-generated errors. These results demonstrate that self-generation enhances the errorless learning advantage when study and test conditions match. The data also support the argument that errorless learning eliminates the misleading implicit influence of prior errors, as well as the need for explicit memory processes to distinguish targets from errors. (JINS, 2009, 15, 704–716.)


2021 ◽  
pp. 1-22
Author(s):  
Galit Yogev-Seligmann ◽  
Tamir Eisenstein ◽  
Elissa Ash ◽  
Nir Giladi ◽  
Haggai Sharon ◽  
...  

Background: Aerobic training has been shown to promote structural and functional neurocognitive plasticity in cognitively intact older adults. However, little is known about the neuroplastic potential of aerobic exercise in individuals at risk of Alzheimer’s disease (AD) and dementia. Objective: We aimed to explore the effect of aerobic exercise intervention and cardiorespiratory fitness improvement on brain and cognitive functions in older adults with amnestic mild cognitive impairment (aMCI). Methods: 27 participants with aMCI were randomized to either aerobic training (n = 13) or balance and toning (BAT) control group (n = 14) for a 16-week intervention. Pre- and post-assessments included functional MRI experiments of brain activation during associative memory encoding and neural synchronization during complex information processing, cognitive evaluation using neuropsychological tests, and cardiorespiratory fitness assessment. Results: The aerobic group demonstrated increased frontal activity during memory encoding and increased neural synchronization in higher-order cognitive regions such as the frontal cortex and temporo-parietal junction (TPJ) following the intervention. In contrast, the BAT control group demonstrated decreased brain activity during memory encoding, primarily in occipital, temporal, and parietal areas. Increases in cardiorespiratory fitness were associated with increases in brain activation in both the left inferior frontal and precentral gyri. Furthermore, changes in cardiorespiratory fitness were also correlated with changes in performance on several neuropsychological tests. Conclusion: Aerobic exercise training may result in functional plasticity of high-order cognitive areas, especially, frontal regions, among older adults at risk of AD and dementia. Furthermore, cardiorespiratory fitness may be an important mediating factor of the observed changes in neurocognitive functions.


Sign in / Sign up

Export Citation Format

Share Document