scholarly journals Tidal disruption events seen in the XMM-Newton slew survey

2016 ◽  
Vol 12 (S324) ◽  
pp. 123-126
Author(s):  
Richard Saxton ◽  
S. Komossa ◽  
Andrew Read ◽  
Paulina Lira ◽  
Kate D. Alexander ◽  
...  

AbstractXMM-Newton performs a survey of the sky in the 0.2-12 keV X-ray band while slewing between observation targets. The sensitivity in the soft X-ray band is comparable with that of the ROSAT all-sky survey, allowing bright transients to be identified in near real-time by a comparison of the flux in both surveys. Several of the soft X-ray flares are coincident with galaxy nuclei and five of these have been interpreted as candidate tidal disruption events (TDE). The first three discovered had a soft X-ray spectrum, consistent with the classical model of TDE, where radiation is released during the accretion phase by thermal processes. The remaining two have an additional hard, power-law component, which in only one case was accompanied by radio emission. Overall the flares decay with the classical index of t−5/3 but vary greatly in the early phase.

1995 ◽  
Vol 10 (3) ◽  
pp. 173-177 ◽  
Author(s):  
P. Ballirano ◽  
A. Maras ◽  
R. Caminiti ◽  
C. Sadun

New powder X-ray data for cancrinite [ideally Na8Si6Al6O24 (CO3)2·2 H2O] are reported along with in-situ real-time thermal processes recorded using energy dispersive X-ray diffractometry (EDXD). A completely anhydrous phase is obtained after heating the sample up to 600 °C and quickly cooling it to room temperature, as shown by means of both Rietveld analysis and IR spectroscopy. The anhydrous phase does not show any tendency to re-acquire molecular water. During the heating process, at around 450 °C, a peak splitting is observed, possibly due to a reversible phase transition.


2012 ◽  
Vol 10 (H16) ◽  
pp. 669-670
Author(s):  
Richard D. Saxton

AbstractWe review the history of X-ray sky surveys from the early experiments to the catalogues of 105 sources produced by ROSAT, Chandra and XMM-Newton. At bright fluxes the X-ray sky is shared between stars, accreting binaries and extragalactic sources while deeper surveys are dominated by AGN and clusters of galaxies. The X-ray background, found by the earliest missions, has been largely resolved into discrete sources at soft (0.3-2 keV) energies but at higher energies an important fraction still escapes detection. The possible identification of the missing flux with Compton-thick AGN has been probed in recent years by Swift and Integral.Variability seen in objects observed at different epochs has proved to be an excellent discriminator for rare classes of objects. The comparison of ROSAT All Sky Survey (RASS) and ROSAT pointed observations identified several Novae and high variability AGN as well as initiating the observational study of Tidal Disruption events. More recently the XMM-Newton slew survey, in conjunction with archival RASS data, has detected further examples of flaring objects which have been followed-up in near-real time at other wavelengths.


Author(s):  
Tsubasa Tamba ◽  
Aya Bamba ◽  
Hirokazu Odaka ◽  
Teruaki Enoto

Abstract X-ray observations play a crucial role in understanding the emission mechanism and relevant physical phenomena of magnetars. We report on X-ray observations made in 2016 of a young magnetar, SGR 1900+14, which is famous for a giant flare in 1998 August. Simultaneous observations were conducted with XMM-Newton and NuSTAR on 2016 October 20 with 23 and 123 ks exposures, respectively. The NuSTAR hard X-ray coverage enabled us to detect the source up to 70 keV. The 1–10 keV and 15–60 keV fluxes were $3.11(3)\times 10^{-12} \, {\rm erg \, s^{-1} \, cm^{-2}}$ and $6.8(3)\times 10^{-12} \, {\rm erg \, s^{-1} \, cm^{-2}}$, respectively. The 1–70 keV spectra were fitted well by a blackbody plus power-law model with a surface temperature of $kT=0.52(2) \, {\rm keV}$, a photon index of the hard power-law of Γ = 1.21(6), and a column density of $N_{\,\rm H}=1.96(11)\times 10^{22} \, {\rm cm^{-2}}$. Compared with previous observations with Suzaku in 2006 and 2009, the 1–10 keV flux showed a decrease by 25%–40%, while the spectral shape did not show any significant change with differences of kT and NH being within 10% of each other. Through timing analysis, we found that the rotation period of SGR 1900+14 on 2016 October 20 was $5.22669(3) \, {\rm s}$. The long-term evolution of the rotation period shows a monotonic decrease in the spin-down rate $\dot{P}$ lasting for more than 15 yr. We also found characteristic behavior of the hard-tail power-law component of SGR 1900+14. The energy-dependent pulse profiles vary in morphology with a boundary of 10 keV. The phase-resolved spectra show the differences between photon indices (Γ = 1.02–1.44) as a function of the pulse phase. Furthermore, the photon index is positively correlated with the X-ray flux of the hard power-law component, which could not be resolved by the previous hard X-ray observations.


2016 ◽  
Vol 12 (S324) ◽  
pp. 119-122
Author(s):  
Z. Paragi ◽  
J. Yang ◽  
S. Komossa ◽  
A. van der Horst ◽  
L. I. Gurvits ◽  
...  

AbstractA small fraction of Tidal Disruption Events (TDE) produce relativistic jets, evidenced by their non-thermal X-ray spectra and transient radio emission. Here we present milliarcsecond-resolution imaging results on TDE J1644+5734 with the European VLBI Network (EVN). These provide a strong astrometric constraint on the average apparent jet velocity βapp< 0.27, that constrains the intrinsic jet velocity for a given viewing angle.


2020 ◽  
Vol 638 ◽  
pp. A67
Author(s):  
S. Falocco ◽  
J. Larsson ◽  
S. Nandi

Aims. We aim to determine the properties of the central region of NGC 1052 using X-ray and radio data. NGC 1052 (z = 0.005) has been investigated for decades in different energy bands and shows radio lobes and a low-luminosity active galactic nucleus. Methods. We used X-ray images from Chandra and radio images from Very Large Array to explore the morphology of the central area. We also studied the spectra of the nucleus and the surrounding region using observations from Chandra and XMM-Newton. Results. We find diffuse soft X-ray radiation and hot-spots along the radio lobes. The spectrum of the circum-nuclear region is well described by a thermal plasma (T ∼ 0.6 keV) and a power law with photon index Γ ∼ 2.3. The nucleus shows a hard power law (Γ ∼ 1.4) modified by complex absorption. A narrow iron Kα line is also clearly detected in all observations, but there is no evidence for relativistic reflection. Conclusions. The extended emission is consistent with originating from extended jets and from jet-triggered shocks in the surrounding medium. The hard power-law emission from the nucleus and the lack of relativistic reflection supports the scenario of inefficient accretion in an advection-dominated accretion flow.


2013 ◽  
Vol 763 (2) ◽  
pp. 84 ◽  
Author(s):  
Geoffrey C. Bower ◽  
Brian D. Metzger ◽  
S. Bradley Cenko ◽  
Jeffrey M. Silverman ◽  
Joshua S. Bloom

2000 ◽  
Vol 195 ◽  
pp. 387-388
Author(s):  
T. Di Matteo ◽  
S. W. Allen

We discuss the detection of hard, power-law emission components in the X-ray spectra of six nearby, giant elliptical galaxies observed with the ASCA satellite and its implication for low-radiative efficiency accretion models around the central, supermassive black holes.


1994 ◽  
Vol 159 ◽  
pp. 374-374
Author(s):  
P. Friedrich ◽  
T. Dörrer ◽  
H. Brunner ◽  
R. Staubert

We found that ROSAT spectra of a sample of 89 AGN are generally steeper than 0.7. The excess above a hard X-ray power law spectrum in this energy range which has been found already with Einstein and EXOSAT for some AGN is now seen very clearly in most sources. Our α-disk models (Dörrer et al., 1992 and references therein) which include Comptonization and relativistic corrections are in agreement with the measured soft excesses when the (ṀEdd., α) parameter space is restricted to α > 0.4 and ṀEdd. ε [0.4, 0.8] (ṀEdd.: Eddington accretion rate).


2018 ◽  
Vol 616 ◽  
pp. A152 ◽  
Author(s):  
Payaswini Saikia ◽  
Elmar Körding ◽  
Deanne L. Coppejans ◽  
Heino Falcke ◽  
David Williams ◽  
...  

We present a sub-arcsec resolution radio imaging survey of a sample of 76 low-luminosity active galactic nuclei (LLAGN) that were previously not detected with the Very Large Array at 15 GHz. Compact, parsec-scale radio emission has been detected above a flux density of 40 μ Jy in 60% (45 of 76) of the LLAGN sample. We detect 20 out of 31 (64%) low-ionization nuclear emission-line region (LINER) nuclei, ten out of 14 (71%) low-luminosity Seyfert galaxies, and 15 out of 31 (48%) transition objects. We use this sample to explore correlations between different emission lines and the radio luminosity. We also populate the X-ray and the optical fundamental plane of black hole activity and further refine its parameters. We obtain a fundamental plane relation of log LR = 0.48 (±0.04) log LX + 0.79 (±0.03) log M and an optical fundamental plane relation of log LR = 0.63 (±0.05) log L[O III] + 0.67 (±0.03) log M after including all the LLAGN detected at high resolution at 15 GHz, and the best-studied hard-state X-ray binaries (luminosities are given in erg s−1 while the masses are in units of solar mass). Finally, we find conclusive evidence that the nuclear 15 GHz radio luminosity function (RLF) of all the detected Palomar Sample LLAGN has a turnover at the low-luminosity end, and is best-fitted with a broken power law. The break in the power law occurs at a critical mass accretion rate of 1.2 × 10−3 M⊙ yr−1, which translates to an Eddington ratio of ṁEdd ~ 5.1 × 10−5, assuming a black hole mass of 109 M⊙. The local group stands closer to the extrapolation of the higher-luminosity sources, and the classical Seyferts agree with the nuclear RLF of the LLAGN in the local universe.


Sign in / Sign up

Export Citation Format

Share Document