Reassessing the Predictions of Sunspot Cycle 24

2018 ◽  
Vol 13 (S340) ◽  
pp. 319-320
Author(s):  
Nipa J. Bhatt ◽  
Rajmal Jain

AbstractPredictions of sunspot cycle are important due to their space weather effects. Bhattet al.(2009) predicted sunspot cycle 24 (Maximum amplitude: 92.8±19.6; Timing:October 2012±4 months) using relative sunspot number (International Sunspot Number), and average geomagnetic activity indexaaconsidering 2008 as the year of sunspot minimum. Owing to the extended solar minimum till 2009, we re-examine our prediction model. Also, the newly calibrated international sunspot number reduces many discrepancies in the old dataset and is available from Solar Influences Data Center (SIDC) website. Considering 2009 as sunspot minimum year and newly calibrated international sunspot number, (i) The annual maximum amplitude of cycle 24 = 118.5±24.4 (observed = 113.3±0.1), (ii) A smoothed monthly mean sunspot number maximum in January 2014±4 months (observed in February 2014). Our prediction method appears to be a reliable indicator for the predictability of cycle 25.

Solar Physics ◽  
2009 ◽  
Vol 260 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Nipa J. Bhatt ◽  
Rajmal Jain ◽  
Malini Aggarwal

2020 ◽  
Vol 38 (6) ◽  
pp. 1237-1245
Author(s):  
Zhanle Du

Abstract. Predicting the maximum intensity of geomagnetic activity for an upcoming solar cycle is important in space weather service and for planning future space missions. This study analyzed the highest and lowest 3-hourly aa index (aaH∕aaL) in a 3 d interval, smoothed by 363 d to analyze their variation with the 11-year solar cycle. It is found that the maximum of aaH (aaHmax) is well correlated with the preceding minimum of either aaH (aaHmin, r=0.85) or aaL (aaLmin, r=0.89) for the solar cycle. Based on these relationships, the intensity of aaHmax for solar cycle 25 is estimated to be aaHmax(25)=83.7±6.9 (nT), about 29 % stronger than that of solar cycle 24. This value is equivalent to the ap index of apmax(25)=47.4±4.4 (nT) if employing the high correlation between ap and aa (r=0.93). The maximum of aaL (aaLmax) is also well correlated with the preceding aaHmin (r=0.80). The maximum amplitude of the sunspot cycle (Rm) is much better correlated with high geomagnetic activity (aaHmax, r=0.79) than with low geomagnetic activity (aaLmax, r=0.37). The rise time from aaHmin to aaHmax is weakly anti-correlated to the following aaHmax (r=-0.42). Similar correlations are also found for the 13-month smoothed monthly mean aa index. These results are expected to be useful in understanding the geomagnetic activity intensity of solar cycle 25.


2018 ◽  
Vol 13 (S340) ◽  
pp. 321-322
Author(s):  
Volkan Sarp ◽  
Ali Kılçık

AbstractSolar activity is a chaotic process and there are various approximations to forecast its long term and short term variations. But there is no prediction method that predicts the solar activity exactly. In this study, a nonlinear prediction approach was applied to international sunspot numbers and performance of predictions was tested for the last 5 solar cycles. These predictions are in good agreement with observed values of the tested solar cycles. According to these results, end of cycle 24 is expected at February, 2020 with 7.7 smoothed monthly mean sunspot number and maximum of cyle 25 is expected at May, 2024 with 119.6 smoothed monthly mean sunspot number.


2020 ◽  
Author(s):  
Zhanle Du

Abstract. Predicting the strength and peak time of geomagnetic activity for the ensuing cycle 25 is important in space weather service for planning future space missions. The minimum aa geomagnetic index around the solar minimum has been often used to predict the maximum amplitude of sunspot cycle, but seldom used to directly predict the maximum aa index. This study analyzed the relationships between the maxima and minima of both the geomagnetic aa and Ap indices for the 11-year cycle. The maximum aa index is found to be well correlated to the preceding minimum with a correlation coefficient of r = 0.860. As a result, the maximum aa index for the ensuing cycle 25 is predicted to be aamax(25) = 26.9 ± 2.6. This value is equivalent to Apmax(25) = 17.3 ± 1.8 ± 1.2 if employing the high correlation between aa and Ap (r = 0.939). The maximum Ap index is also found to be well correlated to the preceding minimum with a correlation coefficient of r = 0.862. Based on this correlation, the maximum Ap index is predicted to be a slightly higher value of Apmax(25) = 19.0 ± 1.6. The rise time of the aa (Ap) index for the 11-year cycle is found to be nearly uncorrelated to the following maximum, r = −0.16 (−0.17). If the data point for cycle 24 (which is far from others) were not considered, the rise time of the Ap index for the 11-year cycle would be weakly correlated to the following maximum, r = −0.404 at a confidence level of 62 %. The rise time for cycle 25 would be roughly estimated to be 89.9 ± 31.6 (months), implying that the geomagnetic activity for the ensuing cycle 25 would peak around April 2025 ± 32 months.


2000 ◽  
Vol 179 ◽  
pp. 163-165
Author(s):  
S. K. Solanki ◽  
M. Fligge ◽  
P. Pulkkinen ◽  
P. Hoyng

AbstractThe records of sunspot number, sunspot areas and sunspot locations gathered over the centuries by various observatories are reanalysed with the aim of finding as yet undiscovered connections between the different parameters of the sunspot cycle and the butterfly diagram. Preliminary results of such interrelationships are presented.


2011 ◽  
Vol 2 (3) ◽  
pp. 205-210 ◽  
Author(s):  
Igor Savel'evich Fal'kovich ◽  
M. R. Olyak ◽  
Nikolai Nikolaevich Kalinichenko ◽  
I. N. Bubnov

2014 ◽  
Vol 4 (2) ◽  
pp. 477-483
Author(s):  
Debojyoti Halder

Sunspots are temporary phenomena on the photosphere of the Sun which appear visibly as dark spots compared to surrounding regions. Sunspot populations usually rise fast but fall more slowly when observed for any particular solar cycle. The sunspot numbers for the current cycle 24 and the previous three cycles have been plotted for duration of first four years for each of them. It appears that the value of peak sunspot number for solar cycle 24 is smaller than the three preceding cycles. When regression analysis is made it exhibits a trend of slow rising phase of the cycle 24 compared to previous three cycles. Our analysis further shows that cycle 24 is approaching to a longer-period but with smaller occurrences of sunspot number.


Solar Physics ◽  
2014 ◽  
Vol 290 (2) ◽  
pp. 635-643 ◽  
Author(s):  
H. S. Ahluwalia ◽  
R. C. Ygbuhay
Keyword(s):  

2021 ◽  
Vol 19 (8) ◽  
pp. 157-168
Author(s):  
Wafaa H.A. Zaki

The ionosphere layer (F2) is known as the most important layer for High frequency (Hf) radio communication because it is a permanent layer and excited during the day and night so it is able to reflect the frequencies at night and day due to its high critical frequency, and this layer is affected by daily and monthly solar activity. In this study the characteristics and behavior of F2 layer during Solar cycle 24 were studied, the effect of Sunspots number (Ri) on the critical frequency (foF2), were investigated for the years (2015, 2016, 2017, 2018, 2019, 2020) which represents the down phase of the solar cycle 24 over Erbil station (36° N, 44° E) by finding the critical frequency (foF2) values, the layer’ s impression times are determined for the days of solstice as well as equinox, where the solar activity was examined for the days of the winter and summer solstice and the days of the spring and autumn equinoxes for a period of 24 hours by applied the International Reference Ionosphere model IRI (2016). The output data for foF2 were verified by using the IRI-Ne- Quick option by specifying the time, date and Sunspot number parameters. Statistical analysis was caried out through the application of the Minitab (version 2018) in order to find the correlation between the critical frequency (foF2) of Ionospheric layer F2 and Sunspot number. It was concluded that the correlation is strong and positive, this indicate that critical frequency (foF2) increase with increasing Sunspots number (Ri) for solar cycle 24.


Sign in / Sign up

Export Citation Format

Share Document