scholarly journals FIRST-ORDER POSSIBILITY MODELS AND FINITARY COMPLETENESS PROOFS

2019 ◽  
Vol 12 (4) ◽  
pp. 637-662
Author(s):  
MATTHEW HARRISON-TRAINOR

AbstractThis article builds on Humberstone’s idea of defining models of propositional modal logic where total possible worlds are replaced by partial possibilities. We follow a suggestion of Humberstone by introducing possibility models for quantified modal logic. We show that a simple quantified modal logic is sound and complete for our semantics. Although Holliday showed that for many propositional modal logics, it is possible to give a completeness proof using a canonical model construction where every possibility consists of finitely many formulas, we show that this is impossible to do in the first-order case. However, one can still construct a canonical model where every possibility consists of a computable set of formulas and thus still of finitely much information.

2014 ◽  
Vol 7 (3) ◽  
pp. 439-454 ◽  
Author(s):  
PHILIP KREMER

AbstractIn the topological semantics for propositional modal logic, S4 is known to be complete for the class of all topological spaces, for the rational line, for Cantor space, and for the real line. In the topological semantics for quantified modal logic, QS4 is known to be complete for the class of all topological spaces, and for the family of subspaces of the irrational line. The main result of the current paper is that QS4 is complete, indeed strongly complete, for the rational line.


2021 ◽  
pp. 14-52
Author(s):  
Cian Dorr ◽  
John Hawthorne ◽  
Juhani Yli-Vakkuri

This chapter presents the system of classical higher-order modal logic which will be employed throughout this book. Nothing more than a passing familiarity with classical first-order logic and standard systems of modal logic is presupposed. We offer some general remarks about the kind of commitment involved in endorsing this logic, and motivate some of its more non-standard features. We also discuss how talk about possible worlds can be represented within the system.


2019 ◽  
Vol 12 (2) ◽  
pp. 255-270 ◽  
Author(s):  
PAVEL NAUMOV ◽  
JIA TAO

AbstractModal logic S5 is commonly viewed as an epistemic logic that captures the most basic properties of knowledge. Kripke proved a completeness theorem for the first-order modal logic S5 with respect to a possible worlds semantics. A multiagent version of the propositional S5 as well as a version of the propositional S5 that describes properties of distributed knowledge in multiagent systems has also been previously studied. This article proposes a version of S5-like epistemic logic of distributed knowledge with quantifiers ranging over the set of agents, and proves its soundness and completeness with respect to a Kripke semantics.


2016 ◽  
Vol 9 (4) ◽  
pp. 752-809 ◽  
Author(s):  
BENJAMIN G. RIN ◽  
SEAN WALSH

AbstractA semantics for quantified modal logic is presented that is based on Kleene’s notion of realizability. This semantics generalizes Flagg’s 1985 construction of a model of a modal version of Church’s Thesis and first-order arithmetic. While the bulk of the paper is devoted to developing the details of the semantics, to illustrate the scope of this approach, we show that the construction produces (i) a model of a modal version of Church’s Thesis and a variant of a modal set theory due to Goodman and Scedrov, (ii) a model of a modal version of Troelstra’s generalized continuity principle together with a fragment of second-order arithmetic, and (iii) a model based on Scott’s graph model (for the untyped lambda calculus) which witnesses the failure of the stability of nonidentity.


2018 ◽  
Vol 11 (3) ◽  
pp. 507-518
Author(s):  
PHILIP KREMER

AbstractWe add propositional quantifiers to the propositional modal logic S4 and to the propositional intuitionistic logic H, introducing axiom schemes that are the natural analogs to axiom schemes typically used for first-order quantifiers in classical and intuitionistic logic. We show that the resulting logics are sound and complete for a topological semantics extending, in a natural way, the topological semantics for S4 and for H.


1984 ◽  
Vol 49 (2) ◽  
pp. 520-527 ◽  
Author(s):  
M. J. Cresswell

The most common way of proving decidability in propositional modal logic is to shew that the system in question has the finite model property. This is not however the only way. Gabbay in [4] proves the decidability of many modal systems using Rabin's result in [8] on the decidability of the second-order theory of successor functions. In particular [4, pp. 258-265] he is able to prove the decidability of a system which lacks the finite model property. Gabbay's system is however complete, in the sense of being characterized by a class of frames, and the question arises whether there is a decidable modal logic which is not complete. Since no incomplete modal logic has the finite model property [9, p. 33], any proof of decidability must employ some such method as Gabbay's. In this paper I use the Gabbay/Rabin technique to prove the decidability of a finitely axiomatized normal modal propositional logic which is not characterized by any class of frames. I am grateful to the referee for suggesting improvements in substance and presentation.The terminology I am using is standard in modal logic. By a frame is understood a pair 〈W, R〉 in which W is a class (of “possible worlds”) and R ⊆ W2. To avoid confusion in what follows, a frame will henceforth be referred to as a Kripke frame. By contrast, a general frame is a pair 〈, Π〉 in which is a Kripke frame and Π is a collection of subsets of W closed under the Boolean operations and satisfying the condition that if A is in Π then so is R−1 “A. A model on a frame (of either kind) is obtained by adding a function V which assigns sets of worlds to propositional variables. In the case of a general frame we require that V(p) ∈ Π.


1980 ◽  
Vol 45 (2) ◽  
pp. 193-203 ◽  
Author(s):  
John Bacon

An individual-concept, hereinafter “individuation”, is a function from possible worlds to individuals. Constant individuations I will call “subsistents” (the notion will presently be generalized). A “substance”, after Thomason [35], is a subsistent whose value exists for the world at hand. In the systems of quantified modal logic developed over the past twenty years, the tendency has been to restrict the range of quantifiers to substances (often represented technically by the simple individuals that would be the values of the constant individuations), while allowing constant terms (particularly descriptions) to express arbitrary individuations. One result is to invalidate unrestricted universal instantiation (and existential generalization), rather as in free logic. Such systems approximate some features of ordinary usage rather nicely, e.g. the behavior of quantifiers and definite descriptions in tensed discourse. Stalnaker and Thomason's Q3r [34], based on the latter's Q3 [35], [36], is exemplary of this approach.The suggestion has repeatedly been considered to quantify over individuations in general (Kanger [14], Kaplan [17], Hughes and Cresswell [12, p. 196], Thomason [35, p. 136], Pollock [30]).


2005 ◽  
Vol 11 (3) ◽  
pp. 428-438 ◽  
Author(s):  
Roman Kontchakov ◽  
Agi Kurucz ◽  
Michael Zakharyaschev

AbstractWe prove that the two-variable fragment of first-order intuitionistic logic is undecidable, even without constants and equality. We also show that the two-variable fragment of a quantified modal logic L with expanding first-order domains is undecidable whenever there is a Kripke frame for L with a point having infinitely many successors (such are, in particular, the first-order extensions of practically all standard modal logics like K, K4, GL, S4, S5, K4.1, S4.2, GL.3, etc.). For many quantified modal logics, including those in the standard nomenclature above, even the monadic two-variable fragments turn out to be undecidable.


2015 ◽  
Vol 12 (3) ◽  
Author(s):  
John Wigglesworth

In this paper, we explore the idea that sets depend on, or are grounded in, their members.  It is said that a set depends on each of its members, and not vice versa.  Members do not depend on the sets that they belong to.  We show that the intuitive modal truth conditions for dependence, given in terms of possible worlds, do not accurately capture asymmetric dependence relations between sets and their members.  We extend the modal truth conditions to include impossible worlds and give a more satisfactory account of  the dependence of a set on its members. Focusing on the case of singletons, we articulate a logical framework in which to evaluate set-theoretic dependence claims, using a normal first-order modal logic.  We show that on this framework the dependence of a singleton on its single members follows from logic alone. However, the converse does not hold.


10.29007/cpbz ◽  
2018 ◽  
Author(s):  
Damien Doligez ◽  
Jael Kriener ◽  
Leslie Lamport ◽  
Tomer Libal ◽  
Stephan Merz

We present a syntactic abstraction method to reason about first-order modal logics by using theorem provers for standard first-order logic and for propositional modal logic.


Sign in / Sign up

Export Citation Format

Share Document